shell编程九九乘法表

时间: 2023-05-31 11:20:25 浏览: 93
### 回答1: 以下是使用shell编程打印九九乘法表的代码: ``` #!/bin/bash for i in {1..9} do for j in {1..9} do if [ $j -le $i ] then echo -n "$j*$i=$(($j*$i)) " fi done echo "" done ``` 输出结果如下: ``` 1*1=1 1*2=2 2*2=4 1*3=3 2*3=6 3*3=9 1*4=4 2*4=8 3*4=12 4*4=16 1*5=5 2*5=10 3*5=15 4*5=20 5*5=25 1*6=6 2*6=12 3*6=18 4*6=24 5*6=30 6*6=36 1*7=7 2*7=14 3*7=21 4*7=28 5*7=35 6*7=42 7*7=49 1*8=8 2*8=16 3*8=24 4*8=32 5*8=40 6*8=48 7*8=56 8*8=64 1*9=9 2*9=18 3*9=27 4*9=36 5*9=45 6*9=54 7*9=63 8*9=72 9*9=81 ``` ### 回答2: shell编程九九乘法表是指使用shell编程语言来实现打印出九九乘法表,这里的九九乘法表是指1*1、1*2...1*9、2*1...2*9一直乘到9*9,共计81项的乘法表。 实现九九乘法表的基本思路是利用双重循环,外层循环控制乘法表行数,内层循环控制乘法表列数。在循环过程中,每次计算出表格中的一个乘积并输出,即可得到九九乘法表。 下面是一份简单的shell编程九九乘法表实现代码: ``` #!/bin/bash for((i=1;i<=9;i++)) do for((j=1;j<=i;j++)) do let "result=i*j" echo -n "$j*$i=$result " done echo "" done ``` 以上代码中,外层循环控制变量i从1到9,内层循环控制变量j从1循环到i,利用let函数计算出j*i的结果,使用echo -n输出每行的内容(-n表示不换行),最后添加一个echo命令来换行。 执行该脚本,就能够得到标准的九九乘法表。而实现九九乘法表的最主要方法,是通过嵌套两层for循环,理解该点非常重要。 在实际的Shell编程中,九九乘法表通常作为入门练习题目之一,能够提高Shell语言的结构化编程能力,并熟悉基本的循环的嵌套语法结构,有利于掌握其他更为复杂的Shell编程实现。 ### 回答3: shell编程是指在Linux或Unix系统中使用shell语言进行编程,实现一些自动化操作或批处理任务。而九九乘法表是我们在小学就学习的数学基础知识,那么如何在shell编程中实现九九乘法表呢? 首先我们需要明确九九乘法表的结构,它是一个9行9列的正方形表格,每行每列都显示对应两个数的乘积。因此,我们可以使用两层循环来实现九九乘法表,先从1循环到9,每次取一个数为行数i。然后在行循环内再从1循环到9,每次取一个数为列数j,计算出i*j的值,然后输出即可。 具体实现代码如下: ```bash #!/bin/bash #九九乘法表 for i in $(seq 1 9); do #外层循环从1循环到9 for j in $(seq 1 9); do #内层循环从1循环到9 result=`expr $i \* $j` #计算i*j的值 printf "%d*%d=%2d " $j $i $result #输出i*j的值 done echo "" #换行输出下一行 done ``` 运行脚本,即可得到完整的九九乘法表: ``` 1*1= 1 2*1= 2 3*1= 3 4*1= 4 5*1= 5 6*1= 6 7*1= 7 8*1= 8 9*1= 9 1*2= 2 2*2= 4 3*2= 6 4*2= 8 5*2=10 6*2=12 7*2=14 8*2=16 9*2=18 1*3= 3 2*3= 6 3*3= 9 4*3=12 5*3=15 6*3=18 7*3=21 8*3=24 9*3=27 1*4= 4 2*4= 8 3*4=12 4*4=16 5*4=20 6*4=24 7*4=28 8*4=32 9*4=36 1*5= 5 2*5=10 3*5=15 4*5=20 5*5=25 6*5=30 7*5=35 8*5=40 9*5=45 1*6= 6 2*6=12 3*6=18 4*6=24 5*6=30 6*6=36 7*6=42 8*6=48 9*6=54 1*7= 7 2*7=14 3*7=21 4*7=28 5*7=35 6*7=42 7*7=49 8*7=56 9*7=63 1*8= 8 2*8=16 3*8=24 4*8=32 5*8=40 6*8=48 7*8=56 8*8=64 9*8=72 1*9= 9 2*9=18 3*9=27 4*9=36 5*9=45 6*9=54 7*9=63 8*9=72 9*9=81 ``` 除了使用seq命令实现循环外,还可以使用C语言风格的for循环结构来实现九九乘法表,具体代码如下: ```bash #!/bin/bash #九九乘法表 for ((i=1; i<=9; i++)) #外层循环从1循环到9,使用C语言风格的for循环 do for ((j=1; j<=i; j++)) #内层循环从1循环到i do result=`expr $i \* $j` printf "%d*%d=%2d " $j $i $result done echo "" #换行输出下一行 done ``` 这段代码的实现思路也是很清晰的,内层循环限制为$j\le i$,每次输出$i*j$的值。运行后可以得到同样的九九乘法表。 综上,使用shell编程实现九九乘法表虽然简单,但是能够帮助我们熟悉循环结构、数学运算以及输出格式等基本语法,对shell编程的入门学习是很有帮助的。

相关推荐

最新推荐

recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

mmexport1719207093976.jpg

mmexport1719207093976.jpg
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到