导入excel数据用不平衡三分类加权法计算权重利用重采样输出采样excel数据pytho
时间: 2024-05-06 20:22:04 浏览: 169
pytho_nvisio.rar_python_python Visio_python excel_syllablegzo_v
n代码如下:
```python
import pandas as pd
from sklearn.utils import resample
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
# 读取Excel数据
df = pd.read_excel('data.xlsx')
# 划分特征和目标变量
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
# 计算类别权重
class_weight = {}
for c in y.unique():
class_weight[c] = len(y) / (len(y[y == c]) * len(y.unique()))
# 重采样平衡数据
X_resampled, y_resampled = resample(X, y, replace=True, n_samples=len(y), random_state=42)
# 划分训练和测试集
X_train = X_resampled[:int(0.8*len(X_resampled))]
y_train = y_resampled[:int(0.8*len(y_resampled))]
X_test = X_resampled[int(0.8*len(X_resampled)):]
y_test = y_resampled[int(0.8*len(y_resampled)):]
# 训练决策树模型
dt = DecisionTreeClassifier(class_weight=class_weight)
dt.fit(X_train, y_train)
# 预测测试集
y_pred = dt.predict(X_test)
# 输出准确率
print('Accuracy:', accuracy_score(y_test, y_pred))
# 输出重采样后的数据
resampled_df = pd.concat([X_resampled, y_resampled], axis=1)
resampled_df.to_excel('resampled_data.xlsx', index=False)
```
需要注意的是,在计算类别权重时,我们使用了不平衡三分类加权法,即将总样本数除以每个类别的样本数乘以类别数得到权重。在重采样时,我们使用了替换采样,即每次抽样后将样本放回,确保每个样本被抽到的概率相等。最后,我们输出了重采样后的数据到Excel文件中。
阅读全文