Dice loss 与CE loss组合代码
时间: 2023-12-03 09:44:02 浏览: 157
HW-Requirements-for-Device-Identifier-Composition-Engine.pdf
以下是将Dice loss和CE loss组合的代码:
```python
import torch.nn.functional as F
class DiceCELoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super(DiceCELoss, self).__init__()
def forward(self, inputs, targets, smooth=1):
# flatten label and prediction tensors
inputs = inputs.view(-1)
targets = targets.view(-1)
# calculate dice score
intersection = (inputs * targets).sum()
dice = (2. * intersection + smooth) / (inputs.sum() + targets.sum() + smooth)
# calculate cross entropy loss
ce_loss = F.cross_entropy(inputs, targets)
# combine dice score and cross entropy loss
loss = 1 - dice + ce_loss
return loss.mean()
```
在这个代码中,我们定义了一个新的损失函数`DiceCELoss`,它将Dice loss和CE loss结合在一起。在`forward`方法中,首先将输入和目标张量展平,然后计算Dice分数并计算交叉熵损失。最后,将Dice分数和交叉熵损失结合在一起,得到最终的损失值。
阅读全文