基于PIE-engine的isodata算法代码
时间: 2023-07-28 07:10:17 浏览: 111
由于基于PIE-engine的ISODATA算法需要结合具体的图像分割任务进行实现,因此无法提供通用的代码。不过,以下是一个基于Python的ISODATA算法实现示例,你可以根据具体需求进行修改和优化。
```python
import numpy as np
def isodata_segmentation(image, K, min_size, max_iterations):
# 对图像进行初步分割,得到初步区域
regions = pie_engine_segmentation(image)
# 对每个区域进行像素点的采样,得到每个区域的样本数据
samples = []
for region in regions:
mask = region.mask
samples.append(image[mask])
# 初始化类别中心和方差
centers = np.zeros((K, image.shape[-1]))
variances = np.zeros((K, image.shape[-1]))
for k in range(K):
centers[k] = np.mean(samples[k], axis=0)
variances[k] = np.var(samples[k], axis=0) + 1e-10
# 迭代优化
for i in range(max_iterations):
# 对样本数据进行分类,得到类别标签
labels = np.zeros(len(samples), dtype=int)
for j, sample in enumerate(samples):
distances = np.linalg.norm(sample - centers, axis=1)
labels[j] = np.argmin(distances)
# 计算每个类别的均值和方差
for k in range(K):
mask = (labels == k)
if np.sum(mask) > 0:
centers[k] = np.mean(samples[mask], axis=0)
variances[k] = np.var(samples[mask], axis=0) + 1e-10
# 合并方差较小的类别
merge_indices = []
for k in range(K):
for l in range(K):
if k != l and np.linalg.norm(centers[k] - centers[l]) < np.sqrt(variances[k] + variances[l]):
merge_indices.append((k, l))
for indices in merge_indices:
k, l = indices
mask = (labels == l)
centers[k] = (centers[k] * np.sum(labels == k) + np.mean(samples[mask], axis=0) * np.sum(mask)) / (np.sum(labels == k) + np.sum(mask))
variances[k] = (variances[k] * np.sum(labels == k) + np.var(samples[mask], axis=0) * np.sum(mask)) / (np.sum(labels == k) + np.sum(mask)) + 1e-10
centers = np.delete(centers, l, axis=0)
variances = np.delete(variances, l, axis=0)
labels[labels == l] = k
# 分裂方差较大的类别
split_indices = []
for k in range(K):
if np.max(variances[k]) > 0.5 * np.mean(variances):
split_indices.append(k)
for k in split_indices:
new_center = centers[k] + np.random.normal(scale=np.sqrt(variances[k]), size=(1, image.shape[-1]))
new_center = np.clip(new_center, 0, 255)
centers[k] = (centers[k] + new_center) / 2
new_variance = np.var(samples[labels == k], axis=0) + 1e-10
variances[k] = (variances[k] + new_variance) / 2
new_center = centers[k] + np.random.normal(scale=np.sqrt(variances[k]), size=(1, image.shape[-1]))
new_center = np.clip(new_center, 0, 255)
centers = np.vstack((centers, new_center))
variances = np.vstack((variances, new_variance))
# 如果类别数量过多或过少,则重新初始化
if len(centers) > K * 2 or len(centers) < K:
centers = np.zeros((K, image.shape[-1]))
variances = np.zeros((K, image.shape[-1]))
for k in range(K):
centers[k] = np.mean(samples[k], axis=0)
variances[k] = np.var(samples[k], axis=0) + 1e-10
# 如果每个类别的样本数量小于最小值,则合并到最近的类别中
for k in range(K):
if np.sum(labels == k) < min_size:
distances = np.linalg.norm(centers - centers[k], axis=1)
distances[k] = np.inf
nearest_index = np.argmin(distances)
mask = (labels == k)
centers[nearest_index] = (centers[nearest_index] * np.sum(labels == nearest_index) + centers[k] * np.sum(mask)) / (np.sum(labels == nearest_index) + np.sum(mask))
variances[nearest_index] = (variances[nearest_index] * np.sum(labels == nearest_index) + variances[k] * np.sum(mask)) / (np.sum(labels == nearest_index) + np.sum(mask)) + 1e-10
centers = np.delete(centers, k, axis=0)
variances = np.delete(variances, k, axis=0)
labels[labels == k] = nearest_index
# 根据类别标签重新进行分割,得到最终结果
segmentation = np.zeros(image.shape[:2], dtype=int)
for j, region in enumerate(regions):
segmentation[region.mask] = labels[j]
return segmentation
```
需要注意的是,上述代码中用到的`pie_engine_segmentation`函数需要根据具体情况进行实现和调整。该函数的作用是对图像进行初步分割,得到初步的区域。
阅读全文