python误差最小的多元回归
时间: 2023-09-14 09:11:37 浏览: 44
实现多元回归的方法有很多种,其中最常用的方法是使用最小二乘法来计算回归系数。
以下是使用Python实现最小二乘法多元回归的代码示例:
```python
import numpy as np
# 定义输入数据
x = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
[10, 11, 12]])
# 定义输出数据
y = np.array([4, 7, 10, 13])
# 添加常数项
x = np.column_stack((np.ones(len(x)), x))
# 计算回归系数
w = np.linalg.inv(x.T.dot(x)).dot(x.T).dot(y)
# 显示回归系数
print(w)
```
在这个例子中,我们定义了一个4x3的输入矩阵x和一个包含4个输出值的向量y。我们使用np.column_stack()函数添加一个常数项,这个常数项被设置为1,这是为了让我们能够计算截距。
然后,我们使用np.linalg.inv()函数计算(x.T.dot(x))的逆矩阵,这个矩阵是最小二乘法中的关键矩阵。最后,我们使用这个矩阵来计算回归系数。
输出结果将是一个包含4个值的向量,这个向量表示回归系数。
相关问题
python中多元线性回归和最小二乘线性回归模型二者用哪个比较形式
多元线性回归和最小二乘线性回归模型都可以用矩阵形式进行表述。
对于多元线性回归模型,假设有 $p$ 个自变量和 $n$ 个样本,可以将自变量和因变量表示为矩阵形式:
$$
\mathbf{X} = \begin{bmatrix}
x_{11} & x_{12} & \cdots & x_{1p} \\
x_{21} & x_{22} & \cdots & x_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \cdots & x_{np}
\end{bmatrix}, \quad
\mathbf{y} = \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}
$$
其中,$\mathbf{X}$ 是自变量矩阵,每行代表一个样本,每列代表一个自变量;$\mathbf{y}$ 是因变量矩阵,每行代表一个样本的因变量。多元线性回归模型可以表示为:
$$
\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}
$$
其中,$\boldsymbol{\beta}$ 是模型参数,$\boldsymbol{\epsilon}$ 是误差项。
对于最小二乘线性回归模型,假设只有一个自变量和 $n$ 个样本,可以将自变量和因变量表示为矩阵形式:
$$
\mathbf{X} = \begin{bmatrix}
1 & x_1 \\
1 & x_2 \\
\vdots & \vdots \\
1 & x_n
\end{bmatrix}, \quad
\mathbf{y} = \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}
$$
其中,$\mathbf{X}$ 是自变量矩阵,第一列都是 $1$,第二列是自变量;$\mathbf{y}$ 是因变量矩阵,每行代表一个样本的因变量。最小二乘线性回归模型可以表示为:
$$
\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}
$$
其中,$\boldsymbol{\beta}$ 是模型参数,$\boldsymbol{\epsilon}$ 是误差项。
综上所述,多元线性回归和最小二乘线性回归模型都可以用矩阵形式进行表述,但是多元线性回归模型中自变量的个数比最小二乘线性回归模型多,因此自变量矩阵的列数也会相应增加。
python中多元线性回归和最小二乘线性回归模型二者怎么比较拟合效果
多元线性回归和最小二乘线性回归模型的拟合效果可以通过可视化和统计指标来比较。
首先,可以使用散点图和拟合曲线来可视化比较模型的拟合效果。对于多元线性回归模型,可以绘制每个自变量与因变量的散点图,并在图中添加拟合曲面或拟合平面,以观察拟合效果。对于最小二乘线性回归模型,可以绘制自变量与因变量的散点图,并在图中添加拟合直线,以观察拟合效果。
其次,可以使用统计指标来比较模型的拟合效果。除了 $R^2$ 和残差方差以外,还可以使用均方根误差(Root Mean Squared Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)等指标来评估模型的预测精度。对于多元线性回归模型和最小二乘线性回归模型,均方根误差和平均绝对误差的计算方式相同,分别为:
$$
\text{RMSE} = \sqrt{\frac{1}{n}\sum_{i=1}^n(y_i - \hat{y}_i)^2}
$$
$$
\text{MAE} = \frac{1}{n}\sum_{i=1}^n|y_i - \hat{y}_i|
$$
其中,$y_i$ 是第 $i$ 个样本的真实值,$\hat{y}_i$ 是第 $i$ 个样本的预测值。
需要注意的是,在比较模型拟合效果时,应该选择多个指标综合考虑,因为单一指标可能无法完全描述模型的预测精度。
阅读全文