python 最小二乘法拟合多元线性回归
时间: 2023-06-28 17:14:35 浏览: 149
MLR.f.rar_MLR_program_多元线性回归_最小二乘法
对于多元线性回归问题,我们可以使用最小二乘法来拟合模型。最小二乘法是一种数学优化方法,用于寻找一组参数,使得模型预测值与实际观测值之间的平方误差最小。
假设我们有 $n$ 个观测样本,每个样本有 $m$ 个特征变量和一个目标变量。我们可以将每个样本表示为一个 $m+1$ 维列向量 $\boldsymbol{x}_i = [1, x_{i1}, x_{i2}, ..., x_{im}]^\top$,其中 $1$ 表示截距项。我们还可以将目标变量表示为一个 $n$ 维列向量 $\boldsymbol{y} = [y_1, y_2, ..., y_n]^\top$。
我们的目标是寻找一个 $m+1$ 维参数向量 $\boldsymbol{\beta} = [\beta_0, \beta_1, \beta_2, ..., \beta_m]^\top$,使得对于任意的观测样本 $\boldsymbol{x}_i$,模型的预测值 $\hat{y}_i = \boldsymbol{x}_i^\top \boldsymbol{\beta}$ 与实际观测值 $y_i$ 之间的平方误差最小。即:
$$\min_{\boldsymbol{\beta}} \sum_{i=1}^n (\hat{y}_i - y_i)^2$$
我们可以将上式展开,得到:
$$\min_{\boldsymbol{\beta}} \sum_{i=1}^n (\boldsymbol{x}_i^\top \boldsymbol{\beta} - y_i)^2$$
这是一个关于 $\boldsymbol{\beta}$ 的二次函数,可以通过求导数为零的方式求解最优解。具体来说,最小二乘法的求解过程如下:
1. 构造设计矩阵 $\boldsymbol{X}$,其中每一行为一个观测样本的特征向量;构造目标向量 $\boldsymbol{y}$。
2. 求解参数向量 $\boldsymbol{\beta}$,使得残差平方和最小化。即 $\boldsymbol{\beta} = (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{y}$。
3. 计算模型的预测值 $\hat{\boldsymbol{y}} = \boldsymbol{X} \boldsymbol{\beta}$。
以上就是使用最小二乘法拟合多元线性回归模型的步骤。在实际应用中,我们可以使用 Python 的 NumPy 库来实现这些计算。
阅读全文