小生境pso matlab
时间: 2023-08-28 14:07:49 浏览: 77
xiaoshengjing.zip_小生境matlab
5星 · 资源好评率100%
PSO(粒子群算法)是一种常用的优化算法,可以用于解决许多问题,如函数优化、神经网络训练等。在MATLAB中实现PSO算法比较简单,下面是一个简单的例子:
```matlab
% PSO算法演示
clc;
clear all;
%% 初始化参数
nPop = 20; % 种群大小
MaxIter = 100; % 最大迭代次数
w = 0.5; % 惯性权重
c1 = 2; % 自我认知因子
c2 = 2; % 社会认知因子
%% 初始化粒子群
dim = 2; % 变量维度
xMin = -5; % 变量下界
xMax = 5; % 变量上界
vMin = -1; % 速度下界
vMax = 1; % 速度上界
x = xMin + (xMax - xMin) * rand(nPop, dim); % 初始化位置
v = vMin + (vMax - vMin) * rand(nPop, dim); % 初始化速度
pbest = x; % 个体最优位置
pbest_val = inf(nPop, 1); % 个体最优值
gbest = zeros(1, dim); % 全局最优位置
gbest_val = inf; % 全局最优值
%% PSO算法迭代
for iter = 1 : MaxIter
% 更新个体最优位置
for i = 1 : nPop
fitness = obj_fun(x(i, :)); % 计算适应度
if fitness < pbest_val(i)
pbest(i, :) = x(i, :);
pbest_val(i) = fitness;
end
end
% 更新全局最优位置
[min_val, min_idx] = min(pbest_val);
if min_val < gbest_val
gbest = pbest(min_idx, :);
gbest_val = min_val;
end
% 更新粒子速度和位置
for i = 1 : nPop
v(i, :) = w * v(i, :) + c1 * rand(1, dim) .* (pbest(i, :) - x(i, :)) ...
+ c2 * rand(1, dim) .* (gbest - x(i, :));
x(i, :) = x(i, :) + v(i, :);
% 边界处理
x(i, x(i, :) < xMin) = xMin;
x(i, x(i, :) > xMax) = xMax;
end
% 输出当前迭代的最优值
fprintf('Iteration %d: Best Value = %f\n', iter, gbest_val);
end
%% 结果可视化
[X, Y] = meshgrid(-5 : 0.1 : 5);
Z = obj_fun([X(:), Y(:)]);
Z = reshape(Z, size(X));
figure;
contour(X, Y, Z, 20);
hold on;
scatter(pbest(:, 1), pbest(:, 2), '+r');
scatter(gbest(1), gbest(2), 'ok', 'LineWidth', 2);
xlabel('x');
ylabel('y');
title('PSO Algorithm');
legend('Objective Function', 'Particles', 'Global Best');
```
在这个例子中,我们使用了一个简单的二元目标函数:
```matlab
function f = obj_fun(x)
f = (x(1) - 1)^2 + (x(2) - 2)^2;
end
```
这个函数的最小值在点 (1, 2) 处,我们可以看到,PSO算法能够找到这个最小值。
阅读全文