% 调用最小费用最大流函数 [flow, cost_flow] = min_cost_max_flow(c, u, s, t);的具体代码
时间: 2024-05-04 21:19:29 浏览: 67
这里提供一个 MATLAB 的最小费用最大流函数的代码实现供参考:
```
function [flow, cost_flow] = min_cost_max_flow(c, u, s, t)
% c: cost matrix
% u: capacity matrix
% s: source node
% t: sink node
n = size(c, 1); % number of nodes
f = zeros(n); % flow matrix
cost_flow = 0; % total cost of flow
while true
% use Bellman-Ford algorithm to find the shortest path from s to t
dist = inf(1, n);
dist(s) = 0;
prev_node = zeros(1, n);
prev_edge = zeros(1, n);
in_queue = false(1, n);
queue = s;
while ~isempty(queue)
node = queue(1);
queue(1) = [];
in_queue(node) = false;
for i = 1:n
if u(node, i) > f(node, i) && dist(i) > dist(node) + c(node, i)
dist(i) = dist(node) + c(node, i);
prev_node(i) = node;
prev_edge(i) = 1; % forward edge
if ~in_queue(i)
queue(end+1) = i;
in_queue(i) = true;
end
end
if u(i, node) > f(i, node) && dist(i) > dist(node) + c(i, node)
dist(i) = dist(node) + c(i, node);
prev_node(i) = node;
prev_edge(i) = -1; % backward edge
if ~in_queue(i)
queue(end+1) = i;
in_queue(i) = true;
end
end
end
end
% if there is no augmenting path, stop
if dist(t) == inf
break
end
% find the bottleneck capacity along the augmenting path
path_flow = inf;
node = t;
while node ~= s
prev = prev_node(node);
if prev_edge(node) == 1
path_flow = min(path_flow, u(prev, node) - f(prev, node));
else
path_flow = min(path_flow, f(node, prev));
end
node = prev;
end
% update the flow and cost matrices
node = t;
while node ~= s
prev = prev_node(node);
if prev_edge(node) == 1
f(prev, node) = f(prev, node) + path_flow;
cost_flow = cost_flow + c(prev, node) * path_flow;
else
f(node, prev) = f(node, prev) - path_flow;
cost_flow = cost_flow - c(node, prev) * path_flow;
end
node = prev;
end
end
% calculate the total flow
flow = sum(f(s, :));
end
```
其中,`c` 表示边的费用矩阵,`u` 表示边的容量矩阵,`s` 表示源点,`t` 表示汇点。函数返回最大流量 `flow` 和最小费用 `cost_flow`。
阅读全文