剪枝训练好的GAN超分辨率模型 代码
时间: 2023-07-10 17:13:56 浏览: 153
下面是一个简单的剪枝训练GAN超分辨率模型的示例代码,仅供参考:
```python
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import models
from tensorflow.keras import optimizers
import numpy as np
# 定义GAN超分辨率模型
def build_model():
input_shape = (None, None, 3)
inputs = layers.Input(shape=input_shape)
x = layers.Conv2D(64, 3, padding='same', activation='relu')(inputs)
x = layers.Conv2D(64, 3, padding='same', activation='relu')(x)
x = layers.Conv2D(64, 3, padding='same', activation='relu')(x)
x = layers.Conv2D(64, 3, padding='same', activation='relu')(x)
x = layers.Conv2DTranspose(32, 3, strides=2, padding='same')(x)
x = layers.Conv2DTranspose(3, 3, strides=2, padding='same')(x)
outputs = layers.Activation('sigmoid')(x)
model = models.Model(inputs=inputs, outputs=outputs)
return model
# 定义剪枝策略
def prune(model, pruned_fraction):
# 按权重大小剪枝
weights = []
for layer in model.layers:
if isinstance(layer, layers.Conv2D):
weights.append(layer.weights[0].numpy().flatten())
all_weights = np.concatenate(weights)
threshold_index = int(pruned_fraction * len(all_weights))
threshold = np.partition(np.abs(all_weights), threshold_index)[threshold_index]
for layer in model.layers:
if isinstance(layer, layers.Conv2D):
weights = layer.weights[0].numpy()
mask = np.abs(weights) > threshold
layer.set_weights([weights * mask, layer.weights[1].numpy()])
# 训练原始模型
def train():
model = build_model()
loss_fn = tf.keras.losses.MeanSquaredError()
optimizer = optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=optimizer, loss=loss_fn)
x_train = np.random.randn(100, 64, 64, 3)
y_train = np.random.randn(100, 128, 128, 3)
model.fit(x_train, y_train, epochs=10)
return model
# 剪枝训练模型
def prune_train(model, pruned_fraction):
prune(model, pruned_fraction)
loss_fn = tf.keras.losses.MeanSquaredError()
optimizer = optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=optimizer, loss=loss_fn)
x_train = np.random.randn(100, 64, 64, 3)
y_train = np.random.randn(100, 128, 128, 3)
model.fit(x_train, y_train, epochs=5)
return model
# 测试模型
def test(model):
x_test = np.random.randn(10, 64, 64, 3)
y_test = np.random.randn(10, 128, 128, 3)
loss = model.evaluate(x_test, y_test)
print('Test loss:', loss)
# 训练和测试模型
model = train()
test(model)
pruned_fraction = 0.5
model = prune_train(model, pruned_fraction)
test(model)
```
这个示例代码中,我们定义了一个简单的GAN超分辨率模型,然后使用随机数据训练原始模型,再按权重大小剪枝50%,最后使用微调训练剪枝后的模型并测试性能。在实际使用中,需要根据具体的任务和数据集调整模型和剪枝策略,以达到最佳的性能和效果。
阅读全文