torch.nn.functional.mse_loss 的代码
时间: 2023-12-09 21:03:50 浏览: 165
Pytorch中torch.nn的损失函数
5星 · 资源好评率100%
以下是 `torch.nn.functional.mse_loss` 的代码实现:
```python
def mse_loss(input, target, size_average=None, reduce=None, reduction='mean'):
if not (target.size() == input.size()):
warnings.warn("Using a target size ({}) that is different to the input size ({}). "
"This will likely lead to incorrect results due to broadcasting. "
"Please ensure they have the same size.".format(target.size(), input.size()),
stacklevel=2)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
if target.requires_grad:
ret = (input - target) ** 2
if reduction != 'none':
ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret)
else:
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
ret = torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
return ret
```
该函数计算输入 `input` 和目标 `target` 之间的均方误差(MSE),返回值为标量张量。可选参数 `size_average` 和 `reduce` 被弃用,应使用 `reduction` 参数指定归约方式。参数说明如下:
- `input`:输入张量。
- `target`:目标张量,与输入张量形状相同。
- `size_average`:已弃用。
- `reduce`:已弃用。
- `reduction`:指定用于计算输出张量的归约方式,可选值为 `'none'`、`'mean'` 和 `'sum'`,默认为 `'mean'`。
当 `target.requires_grad=True` 时,计算 `input` 与 `target` 之间的 MSE,并根据 `reduction` 的值进行归约;否则,将 `input` 和 `target` 扩展为相同的形状,再调用 C++ 实现的 `mse_loss` 计算 MSE,并根据 `reduction` 的值进行归约。需要注意的是,如果 `target` 与 `input` 形状不同,该函数会发出警告。
阅读全文