torch.nn.functional.mse_loss
时间: 2023-04-12 18:03:34 浏览: 680
torch.nn.functional.mse_loss是PyTorch中的一个函数,用于计算均方误差损失。它接受两个输入,即预测值和目标值,并返回它们之间的均方误差。这个函数通常用于回归问题中,用于评估模型的性能。
相关问题
torch.nn.functional.mse_loss 的代码
以下是 `torch.nn.functional.mse_loss` 的代码实现:
```python
def mse_loss(input, target, size_average=None, reduce=None, reduction='mean'):
if not (target.size() == input.size()):
warnings.warn("Using a target size ({}) that is different to the input size ({}). "
"This will likely lead to incorrect results due to broadcasting. "
"Please ensure they have the same size.".format(target.size(), input.size()),
stacklevel=2)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
if target.requires_grad:
ret = (input - target) ** 2
if reduction != 'none':
ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret)
else:
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
ret = torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
return ret
```
该函数计算输入 `input` 和目标 `target` 之间的均方误差(MSE),返回值为标量张量。可选参数 `size_average` 和 `reduce` 被弃用,应使用 `reduction` 参数指定归约方式。参数说明如下:
- `input`:输入张量。
- `target`:目标张量,与输入张量形状相同。
- `size_average`:已弃用。
- `reduce`:已弃用。
- `reduction`:指定用于计算输出张量的归约方式,可选值为 `'none'`、`'mean'` 和 `'sum'`,默认为 `'mean'`。
当 `target.requires_grad=True` 时,计算 `input` 与 `target` 之间的 MSE,并根据 `reduction` 的值进行归约;否则,将 `input` 和 `target` 扩展为相同的形状,再调用 C++ 实现的 `mse_loss` 计算 MSE,并根据 `reduction` 的值进行归约。需要注意的是,如果 `target` 与 `input` 形状不同,该函数会发出警告。
import torch import torch.nn as nn import numpy as np import torch.nn.functional as F import matplotlib.pyplot as plt from torch.autograd import Variable x=torch.tensor(np.array([[i] for i in range(10)]),dtype=torch.float32) y=torch.tensor(np.array([[i**2] for i in range(10)]),dtype=torch.float32) #print(x,y) x,y=(Variable(x),Variable(y))#将tensor包装一个可求导的变量 print(type(x)) net=torch.nn.Sequential( nn.Linear(1,10,dtype=torch.float32),#隐藏层线性输出 torch.nn.ReLU(),#激活函数 nn.Linear(10,20,dtype=torch.float32),#隐藏层线性输出 torch.nn.ReLU(),#激活函数 nn.Linear(20,1,dtype=torch.float32),#输出层线性输出 ) optimizer=torch.optim.SGD(net.parameters(),lr=0.05)#优化器(梯度下降) loss_func=torch.nn.MSELoss()#最小均方差 #神经网络训练过程 plt.ion() plt.show()#动态学习过程展示 for t in range(2000): prediction=net(x),#把数据输入神经网络,输出预测值 loss=loss_func(prediction,y)#计算二者误差,注意这两个数的顺序 optimizer.zero_grad()#清空上一步的更新参数值 loss.backward()#误差反向传播,计算新的更新参数值 optimizer.step()#将计算得到的更新值赋给net.parameters()D:\Anaconda\python.exe D:\py\text.py <class 'torch.Tensor'> Traceback (most recent call last): File "D:\py\text.py", line 28, in <module> loss=loss_func(prediction,y)#计算二者误差,注意这两个数的顺序 File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "D:\Anaconda\lib\site-packages\torch\nn\modules\loss.py", line 536, in forward return F.mse_loss(input, target, reduction=self.reduction) File "D:\Anaconda\lib\site-packages\torch\nn\functional.py", line 3281, in mse_loss if not (target.size() == input.size()): AttributeError: 'tuple' object has no attribute 'size'
这段代码出现了一个错误,具体错误信息是 'tuple' object has no attribute 'size'。这个错误通常发生在调用 PyTorch 的函数时,输入的数据类型不正确,需要将数据类型转换为正确的类型。在这段代码中,loss_func 函数的输入是一个元组,而不是一个张量,因此无法获取其尺寸信息,导致出现错误。需要修改代码,将 prediction 从元组转换为张量,才能正确计算误差。可以将代码修改为:
```
prediction = net(x)
loss = loss_func(prediction.squeeze(), y.squeeze())
```
这样,就能将 prediction 和 y 转换为张量,并使用 squeeze() 函数去除维度为 1 的维度。这样就能够正确计算二者之间的误差了。
阅读全文