我需要上面的C++代码
时间: 2024-03-06 07:50:37 浏览: 187
C 代码 使用动态规划来解决变革问题.rar
好的,以下是使用C++调用ONNX Runtime的TensorRT执行器的示例代码:
```c++
#include <iostream>
#include <vector>
#include <chrono>
#include <onnxruntime_cxx_api.h>
int main()
{
// Load the ONNX model
Ort::SessionOptions session_options;
session_options.SetIntraOpNumThreads(1); // Set the number of threads
session_options.SetExecutionMode(ORT_SEQUENTIAL); // Set the execution mode
session_options.SetOptimizedModelFilePath("path/to/your/optimized/onnx/model"); // Set the path to optimized ONNX model
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); // Set the optimization level
session_options.AddConfigEntry("session.gpus", "0"); // Set the GPU device ID
const char* model_path = "path/to/your/onnx/model";
Ort::Session session(env, model_path, session_options);
// Get the input and output names
std::vector<const char*> input_names = session.GetInputNames();
std::vector<const char*> output_names = session.GetOutputNames();
Ort::TypeInfo input_type_info = session.GetInputTypeInfo(0);
Ort::TypeInfo output_type_info = session.GetOutputTypeInfo(0);
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
// Prepare the input tensor
std::vector<int64_t> input_shape = input_tensor_info.GetShape();
std::vector<float> input_data(input_shape[0] * input_shape[1] * input_shape[2] * input_shape[3]);
float* input_data_ptr = input_data.data();
Ort::MemoryInfo input_memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
size_t input_tensor_size = input_data.size() * sizeof(float);
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(input_memory_info, input_data_ptr, input_tensor_size, input_shape.data(), input_shape.size());
void* input_data_buffer = input_tensor.GetTensorMutableData<float>();
// Run the model
std::vector<Ort::Value> inputs;
std::vector<Ort::Value> outputs;
inputs.push_back(input_tensor);
auto start = std::chrono::high_resolution_clock::now();
session.Run(Ort::RunOptions{ nullptr }, input_names.data(), inputs.data(), inputs.size(), output_names.data(), outputs.size());
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Inference time: " << elapsed_seconds.count() << " s" << std::endl;
// Get the output tensor
std::vector<int64_t> output_shape = output_tensor_info.GetShape();
std::vector<float> output_data(output_shape[0] * output_shape[1] * output_shape[2] * output_shape[3]);
float* output_data_ptr = output_data.data();
Ort::MemoryInfo output_memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
size_t output_tensor_size = output_data.size() * sizeof(float);
Ort::Value output_tensor = Ort::Value::CreateTensor<float>(output_memory_info, output_data_ptr, output_tensor_size, output_shape.data(), output_shape.size());
void* output_data_buffer = output_tensor.GetTensorMutableData<float>();
outputs.push_back(output_tensor);
}
```
你需要根据你的需求调整会话选项,例如设置线程数、优化级别以及GPU设备ID等。
阅读全文