device = torch.device("cuda:" + cfg.DEVICE if cfg.USE_CUDA else "cpu")
时间: 2023-07-21 16:06:09 浏览: 115
这段代码的作用是将模型运行的设备设置为 GPU,如果没有可用的 GPU,则使用 CPU。其中,`cfg.DEVICE` 是指定的 GPU 设备号,`cfg.USE_CUDA` 是一个布尔值,表示是否使用 GPU。如果 `cfg.USE_CUDA` 为真,那么 `device` 就是 `"cuda:" + cfg.DEVICE`,否则 `device` 就是 `"cpu"`。最终,这个设备会被传递给模型,用于模型的运算。
相关问题
use_cuda = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor device = torch.device("cpu") #使用GPU进行训练 from torch.autograd import Variable from replay_buffer import ReplayMemory, Transition # set up matplotlib is_ipython = 'inline' in matplotlib.get_backend() if is_ipython: from IPython import display #plt.ion() use_cuda = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor device = torch.device("cpu")把这段代码改成CPU训练
您可以像这样将上述代码更改为在CPU上进行训练:
```
import torch
from torch.autograd import Variable
from replay_buffer import ReplayMemory, Transition
device = torch.device("cpu") # 使用CPU进行训练
# 设置matplotlib
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:
from IPython import display
# 定义FloatTensor
FloatTensor = torch.FloatTensor
# 创建replay buffer
memory = ReplayMemory(10000)
# 将模型和优化器移动到CPU上
model = DQN().to(device)
optimizer = optim.Adam(model.parameters())
# 定义状态转换函数
def state_to_tensor(state):
return FloatTensor([state])
# 训练模型
for i in range(num_episodes):
state = env.reset()
for t in count():
# 获取动作
action = select_action(state)
# 执行动作并获取下一状态、奖励、是否结束
next_state, reward, done, _ = env.step(action.item())
# 转换状态和动作为张量
state_tensor = state_to_tensor(state)
action_tensor = LongTensor([action])
next_state_tensor = state_to_tensor(next_state)
# 存储状态转换
memory.push(state_tensor, action_tensor, next_state_tensor, reward)
# 更新状态
state = next_state
# 训练模型
optimize_model()
if done:
break
```
这里我们将使用CPU进行训练,所以我们将`device`设为`torch.device("cpu")`;将`FloatTensor`设为`torch.FloatTensor`即可。同时,我们还需要将模型和优化器移动到CPU上,可以使用`to`方法将它们移动到CPU上。
详细解释以下代码device = torch.device("cuda:"+str(gpu_id) if torch.cuda.is_available() else "cpu")
这行代码的主要作用是为了指定模型的运行设备,其中包含以下几个步骤:
1. 判断当前计算机是否支持GPU,如果支持,则将设备指定为cuda,否则指定为cpu。
2. 如果当前计算机支持GPU,则通过str(gpu_id)的方式获取GPU的ID。其中,gpu_id是一个整数,表示第几块GPU。
3. 最后,将设备信息存储在torch.device对象中,以便后续使用。
举个例子,如果当前计算机支持GPU,且有两块GPU,那么可以通过以下代码将模型指定在第一块GPU上运行:
```
gpu_id = 0
device = torch.device("cuda:"+str(gpu_id) if torch.cuda.is_available() else "cpu")
```
如果当前计算机不支持GPU,则将设备信息指定为cpu:
```
device = torch.device("cpu")
```
这样可以保证模型在不同的设备上都能够正常运行。
阅读全文