目标:利用BP神经网络算法,对鸢尾花进行分类 数据集:Iris.csv. 1)基本要求:通过BP算法实现鸢尾花的分类,给出训练集与测试集的分类结果(鼓励实验结果丰富)
时间: 2024-05-09 17:15:23 浏览: 74
(课程作业,实验课程)BP神经网络模型实现对鸢尾花、红酒数据集分类
5星 · 资源好评率100%
好的,这是一个典型的机器学习分类问题。我们可以使用Python中的pandas库来读取csv文件,使用numpy库来处理数据,使用sklearn库来构建BP神经网络模型。
首先,我们需要导入必要的库:
```python
import pandas as pd
import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```
然后,我们读取数据集:
```python
data = pd.read_csv('Iris.csv')
```
接下来,我们将数据集分为训练集和测试集:
```python
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
现在,我们可以构建BP神经网络模型了:
```python
clf = MLPClassifier(hidden_layer_sizes=(4, 2), max_iter=1000)
clf.fit(X_train, y_train)
```
这里我们使用了一个有两个隐藏层,每个隐藏层有4个和2个神经元的BP神经网络。
最后,我们可以使用测试集来评估模型的分类性能:
```python
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy: {:.2f}'.format(accuracy))
```
完整代码如下:
```python
import pandas as pd
import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
data = pd.read_csv('Iris.csv')
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = MLPClassifier(hidden_layer_sizes=(4, 2), max_iter=1000)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy: {:.2f}'.format(accuracy))
```
你可以根据需要调整隐藏层的神经元数量和迭代次数来优化模型。
阅读全文