生蚝: (1)用pandas 库读取 PRSA_ data 2010.1.1-2014.12.31.csx 文件,查看前3行、后2行。 (2) 刪除列 DEWP、TEMP、PRES、cbwd、Iws、Is、Ir,并将剰余列用 pandas 数据 预处理模块将缺失值丢弃处理,导出到新的csV 文件 pm25_ data 2010.1.1-2014.12.31.csv。 (3)利用pandas 库读取新的数据集 pm25_ data 2010.1.1-2014.12.31.csv,并选择字段 pm2.5 大子300 的所有数据集,昇出力文本文件 pm25_hazardous_data_2010.1.1-2014. 12.31.txt,要求数据之间用逗号分隔,每行末尾包含换行符。 (4)读取文本文件 pm25_hazardous_ data_ 2010.1.1-2014.12.31.txt 并转存到 Excel 文件 pm25_hazardous_data_ 2010.1.1-2014.12.31.xlsx # 生蚝: (5)重新读取文本文件读取文本文件 pm25_ hazardous_ data 2010.1.1-2014.12.31.txt,分别统计出现最多的month、 day、hour, 并将 month、 day、hour 的出现频次用柱状图显示。要求包括图例、图标题,xy轴均显示刻度值,柱状图填充颜色分别为红色、绿色、蓝色;并将结果保存为 png 图片保存,分辦率为 400 dpi,png 图片命名分别为 pm25 hazardous_ month_ day hour.png。

时间: 2024-03-03 21:49:42 浏览: 92
WHL

pandas-0.21.1-cp36-cp36m-win-amd64.whl

我可以帮您解决关于Python的问题,但是您提出的问题涉及到数据处理和可视化,需要使用Python的相关库进行实现。以下是您提出的问题的解答: (1)读取 PRSA_ data 2010.1.1-2014.12.31.csx 文件并查看前3行、后2行代码: ```python import pandas as pd data = pd.read_csv('PRSA_data_2010.1.1-2014.12.31.csv') print(data.head(3)) # 查看前3行 print(data.tail(2)) # 查看后2行 ``` (2)删除列 DEWP、TEMP、PRES、cbwd、Iws、Is、Ir,并将剩余列用 pandas 数据预处理模块将缺失值丢弃处理,并导出到新的 csv 文件 pm25_ data 2010.1.1-2014.12.31.csv。 ```python data = data.drop(columns=['DEWP', 'TEMP', 'PRES', 'cbwd', 'Iws', 'Is', 'Ir']) data = data.dropna() # 删除缺失值 data.to_csv('pm25_data_2010.1.1-2014.12.31.csv', index=False) # 导出为新的 csv 文件 ``` (3)选择字段 pm2.5 大于300的所有数据集,导出为文本文件 pm25_hazardous_data_2010.1.1-2014.12.31.txt。 ```python hazardous_data = data[data['pm2.5'] > 300] hazardous_data.to_csv('pm25_hazardous_data_2010.1.1-2014.12.31.txt', sep=',', index=False, header=False, line_terminator='\n') ``` (4)将文本文件 pm25_hazardous_data_2010.1.1-2014.12.31.txt 转存到 Excel 文件 pm25_hazardous_data_2010.1.1-2014.12.31.xlsx。 ```python hazardous_data = pd.read_csv('pm25_hazardous_data_2010.1.1-2014.12.31.txt', header=None) hazardous_data.to_excel('pm25_hazardous_data_2010.1.1-2014.12.31.xlsx', index=False, header=False) ``` (5)重新读取文本文件 pm25_hazardous_data_2010.1.1-2014.12.31.txt,分别统计出现最多的 month、day、hour,并将 month、day、hour 的出现频次用柱状图显示,并将结果保存为 png 图片保存,分辨率为 400 dpi,png 图片命名分别为 pm25_hazardous_month_day_hour.png。 ```python import matplotlib.pyplot as plt hazardous_data = pd.read_csv('pm25_hazardous_data_2010.1.1-2014.12.31.txt', header=None, names=['year', 'month', 'day', 'hour', 'pm2.5']) month_count = hazardous_data['month'].value_counts() day_count = hazardous_data['day'].value_counts() hour_count = hazardous_data['hour'].value_counts() fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5)) month_count.plot(kind='bar', ax=ax1, color='r') ax1.set_xlabel('Month') ax1.set_ylabel('Frequency') ax1.set_title('PM2.5 Hazardous Month Count') ax1.set_xticklabels(month_count.index, rotation=0) day_count.plot(kind='bar', ax=ax2, color='g') ax2.set_xlabel('Day') ax2.set_ylabel('Frequency') ax2.set_title('PM2.5 Hazardous Day Count') ax2.set_xticklabels(day_count.index, rotation=0) hour_count.plot(kind='bar', ax=ax3, color='b') ax3.set_xlabel('Hour') ax3.set_ylabel('Frequency') ax3.set_title('PM2.5 Hazardous Hour Count') ax3.set_xticklabels(hour_count.index, rotation=0) plt.savefig('pm25_hazardous_month_day_hour.png', dpi=400) ```
阅读全文

相关推荐

Traceback (most recent call last): File "d:\develop\coating_poc\data_exploration_and_analysis.py", line 7, in <module> data = pd.read_csv('D:\\develop\\data\\coating_poc_data.csv', encoding='utf-8-sig', chunksize=chunk_size) #本地电脑数据文件路径 File "D:\ProgramData\Anaconda3\lib\site-packages\pandas\util\_decorators.py", line 311, in wrapper return func(*args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 678, in read_csv return _read(filepath_or_buffer, kwds) File "D:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 575, in _read parser = TextFileReader(filepath_or_buffer, **kwds) File "D:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 932, in __init__ self._engine = self._make_engine(f, self.engine) File "D:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 1234, in _make_engine return mapping[engine](f, **self.options) File "D:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 75, in __init__ self._reader = parsers.TextReader(src, **kwds) File "pandas\_libs\parsers.pyx", line 544, in pandas._libs.parsers.TextReader.__cinit__ File "pandas\_libs\parsers.pyx", line 633, in pandas._libs.parsers.TextReader._get_header File "pandas\_libs\parsers.pyx", line 847, in pandas._libs.parsers.TextReader._tokenize_rows File "pandas\_libs\parsers.pyx", line 1952, in pandas._libs.parsers.raise_parser_error UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb8 in position 214: invalid start byte

Traceback (most recent call last): File "E:\作业\建模\新冠\1.py", line 9, in <module> df = pd.read_csv(r'上海市新增病例人数.xlsx') File "C:\Users\Lenovo\AppData\Roaming\Python\Python310\site-packages\pandas\io\parsers\readers.py", line 912, in read_csv return _read(filepath_or_buffer, kwds) File "C:\Users\Lenovo\AppData\Roaming\Python\Python310\site-packages\pandas\io\parsers\readers.py", line 577, in _read parser = TextFileReader(filepath_or_buffer, **kwds) File "C:\Users\Lenovo\AppData\Roaming\Python\Python310\site-packages\pandas\io\parsers\readers.py", line 1407, in __init__ self._engine = self._make_engine(f, self.engine) File "C:\Users\Lenovo\AppData\Roaming\Python\Python310\site-packages\pandas\io\parsers\readers.py", line 1679, in _make_engine return mapping[engine](f, **self.options) File "C:\Users\Lenovo\AppData\Roaming\Python\Python310\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 93, in __init__ self._reader = parsers.TextReader(src, **kwds) File "pandas\_libs\parsers.pyx", line 548, in pandas._libs.parsers.TextReader.__cinit__ File "pandas\_libs\parsers.pyx", line 637, in pandas._libs.parsers.TextReader._get_header File "pandas\_libs\parsers.pyx", line 848, in pandas._libs.parsers.TextReader._tokenize_rows File "pandas\_libs\parsers.pyx", line 859, in pandas._libs.parsers.TextReader._check_tokenize_status File "pandas\_libs\parsers.pyx", line 2017, in pandas._libs.parsers.raise_parser_error UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa6 in position 17: invalid start byte

最新推荐

recommend-type

浅谈pandas.cut与pandas.qcut的使用方法及区别

在数据分析和数据预处理过程中,将数值数据分组或分箱是常见的操作,Pandas 提供了两个非常有用的函数 `pandas.cut` 和 `pandas.qcut` 来实现这一功能。这两个函数都能将一维数组或 Series 分割成多个区间,但它们的...
recommend-type

python基础教程:Python 中pandas.read_excel详细介绍

在Python数据分析领域,`pandas`库是不可或缺的一部分,它提供了强大的数据处理功能。`pandas.read_excel`函数是用于从Excel文件中加载数据到DataFrame对象的一个关键方法。本篇文章将深入探讨`pandas.read_excel`的...
recommend-type

python读取.mat文件的数据及实例代码

MATLAB文件格式用于保存变量、矩阵和其他数据结构,而Python中的Scipy库提供了读取这些文件的功能。以下是对如何使用Python读取`.mat`文件以及相关知识点的详细说明: 首先,导入必要的库: ```python from scipy....
recommend-type

Python Numpy:找到list中的np.nan值方法

在Python的科学计算领域,Numpy库是不可或缺的一部分,它提供了大量高效的数据处理功能。在处理数据时,尤其是在进行数值计算时,经常会遇到缺失值的情况,这些缺失值通常表示为`np.nan`(Not a Number)。本篇文章...
recommend-type

java+sql server项目之科帮网计算机配件报价系统源代码.zip

sql server+java项目之科帮网计算机配件报价系统源代码
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"