model2 = DecisionTreeClassifier(random_state=77)补充代码实现3分类
时间: 2024-09-18 20:19:13 浏览: 52
CART算法训练决策树的简单实现_python_代码_下载
5星 · 资源好评率100%
如果你想使用决策树(Decision Tree Classifier)模型(`model2`)来进行3分类任务,你可以按照以下步骤添加到上述代码中:
```python
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
# 创建决策树分类器,设定随机种子为77
model2 = DecisionTreeClassifier(criterion='gini', random_state=77, max_depth=None, min_samples_split=2, min_samples_leaf=1)
# 如果你想使用默认参数,可以去掉"random_state=77"
# 训练模型
model2.fit(X_train, y_train)
# 预测测试集
y_pred_2 = model2.predict(X_test)
# 检查预测结果
print("Using Decision Tree Model:")
print("Predicted labels:", y_pred_2)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred_2)
print("Accuracy:", accuracy)
# 可能需要的评估报告
print("\nClassification Report for Decision Tree:\n", classification_report(y_test, y_pred_2))
阅读全文