#划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data.drop(['type'], axis=1), data['type'], test_size=0.2, random_state=42) #构建决策树模型 dt_model = DecisionTreeClassifier(random_state=42) dt_model.fit(X_train, y_train) #构建支持向量机模型 svm_model = SVC(random_state=42) svm_model.fit(X_train, y_train) #在测试集上进行预测,并计算准确性 y_pred_dt = dt_model.predict(X_test) dt_accuracy = accuracy_score(y_test, y_pred_dt) y_pred_svm = svm_model.predict(X_test) svm_accuracy = accuracy_score(y_test, y_pred_svm) print("决策树准确性:", dt_accuracy) print("支持向量机准确性:", svm_accuracy)
时间: 2023-12-24 08:38:26 浏览: 115
这段代码是用来训练和测试两个分类模型(决策树和支持向量机),并评估它们的准确性。
首先,使用 `train_test_split` 方法将数据集分为训练集和测试集,其中训练集占比为 80%。然后,分别使用 `DecisionTreeClassifier` 和 `SVC` 方法构建决策树和支持向量机两个模型,并在训练集上进行拟合。接着,用两个模型对测试集进行预测,使用 `accuracy_score` 方法计算出两个模型的准确性。最后,将两个模型的准确性打印出来,以便比较它们的表现。
这个过程是机器学习中常见的模型建立、训练和评估的流程,目的是找到一个在测试集上表现良好的模型,以便用于预测新的未知样本。
相关问题
from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier # 加载葡萄酒数据集 wine = load_wine() # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.3, random_state=42) # 初始化决策树模型 clf = DecisionTreeClassifier() # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # 输出准确率 print("7:3的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为3:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.25, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred1 = clf.predict(X_test) # 输出准确率 print("3:1的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为4:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.2, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred2 = clf.predict(X_test) # 输出准确率 print("4:1的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为9:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.1, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred3 = clf.predict(X_test) # 输出准确率 print("9:1的准确率:", clf.score(X_test, y_test))
好的,您已经提供了代码来计算每种数据集划分方式的准确率。现在,我会使用 Python 的 Matplotlib 库来绘制折线图,以显示这4种数据集划分方式的准确率。以下是绘制折线图的代码示例:
```python
import matplotlib.pyplot as plt
# 计算每种数据集划分方式的准确率
acc_73 = clf.score(X_test, y_test)
acc_31 = clf.score(X_test, y_test)
acc_41 = clf.score(X_test, y_test)
acc_91 = clf.score(X_test, y_test)
# 绘制折线图
plt.plot([7, 3], [acc_73, acc_73], label="7:3")
plt.plot([3, 1], [acc_31, acc_31], label="3:1")
plt.plot([4, 1], [acc_41, acc_41], label="4:1")
plt.plot([9, 1], [acc_91, acc_91], label="9:1")
# 添加图例和标签
plt.legend()
plt.xlabel("Training set size ratio")
plt.ylabel("Accuracy")
plt.title("Accuracy vs. Training set size ratio")
# 显示折线图
plt.show()
```
这段代码将会绘制一张折线图,其中 x 轴表示训练集和测试集的比例,y 轴表示准确率。每种比例对应一个点,用折线将这些点连接起来,从而形成折线图。图例会显示每个折线所代表的数据集划分方式。
# 定义全局变量 file_path = "" train_ratio = 0.8# 划分训练集和测试集 def split_train_test(): global file_path, train_ratio # 读取CSV文件 data = pd.read_csv(file_path) # 划分数据集 train, test = train_test_split(data, train_size=train_ratio) # 显示训练集和测试集大小 text_output.insert(tk.END, "训练集大小:{}\n".format(len(train))) text_output.insert(tk.END, "测试集大小:{}\n".format(len(test)))怎么样写代码可以是用户自由划分测试集与训练集
你可以修改 `split_train_test` 函数,让它接受一个参数 `test_ratio`,表示测试集占总数据集的比例。然后根据传入的 `test_ratio` 计算出 `train_ratio`,并使用它来划分训练集和测试集。以下是修改后的代码示例:
```python
# 定义全局变量 file_path = ""
test_ratio = 0.2 # 测试集占比
train_ratio = 1 - test_ratio # 训练集占比
# 划分训练集和测试集
def split_train_test(test_ratio):
global file_path, train_ratio
# 读取CSV文件
data = pd.read_csv(file_path)
# 划分数据集
train, test = train_test_split(data, test_size=test_ratio)
# 显示训练集和测试集大小
text_output.insert(tk.END, "训练集大小:{}\n".format(len(train)))
text_output.insert(tk.END, "测试集大小:{}\n".format(len(test)))
```
然后在调用 `split_train_test` 函数时,传入你想要的测试集占比即可。例如,如果你想要测试集占总数据集的 30%,可以这样调用:
```python
split_train_test(0.3)
```
阅读全文