from sklearn.model_selection import train_test_split y = data2['class'].values X = data2.drop('class', axis=1) #训练集测试集划分 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=10, stratify=y) print(X_train.shape) print(X_test.shape)这段代码有错误的地方吗
时间: 2023-11-06 13:11:34 浏览: 175
这段代码没有明显的错误。它使用了Scikit-learn库中的train_test_split函数,对数据集进行了训练集测试集划分。其中,X表示数据集的特征变量,y表示目标变量(即class),test_size=0.25表示测试集占总数据集的25%,random_state=10表示设置随机数种子为10,stratify=y表示按照目标变量y的比例在训练集和测试集中分配数据。
该代码运行后会输出训练集和测试集的形状,以便我们确认数据集是否正确划分。
相关问题
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, classification_report, accuracy_score # 1. 数据准备 train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test_noLabel.csv') # 填充缺失值 train_data.fillna(train_data.mean(), inplace=True) test_data.fillna(test_data.mean(), inplace=True) # 2. 特征工程 X_train = train_data.drop(['Label', 'ID'], axis=1) y_train = train_data['Label'] X_test = test_data.drop('ID', axis=1) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 3. 模型建立 model = RandomForestClassifier(n_estimators=100, random_state=42) # 4. 模型训练 model.fit(X_train, y_train) # 5. 进行预测 y_pred = model.predict(X_test) # 6. 保存预测结果 df_result = pd.DataFrame({'ID': test_data['ID'], 'Label': y_pred}) df_result.to_csv('forecast_result.csv', index=False) # 7. 模型评估 y_train_pred = model.predict(X_train) print('训练集准确率:', accuracy_score(y_train, y_train_pred)) print('测试集准确率:', accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) # 8. 绘制柱形图 feature_importances = pd.Series(model.feature_importances_, index=X_train.columns) feature_importances = feature_importances.sort_values(ascending=False) plt.figure(figsize=(10, 6)) sns.barplot(x=feature_importances, y=feature_importances.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title('Visualizing Important Features') plt.show() # 9. 对比类分析 train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red']) plt.title('Class Distribution') plt.xlabel('Class') plt.ylabel('Frequency') plt.show()
这段代码是一个机器学习模型的完整流程,包括数据准备、特征工程、模型建立、模型训练、预测结果保存、模型评估和可视化分析等步骤。其中包括了绘制柱形图和对比类分析的代码。
绘制柱形图的代码如下:
```
feature_importances = pd.Series(model.feature_importances_, index=X_train.columns)
feature_importances = feature_importances.sort_values(ascending=False)
plt.figure(figsize=(10, 6))
sns.barplot(x=feature_importances, y=feature_importances.index)
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
plt.title('Visualizing Important Features')
plt.show()
```
这段代码会生成一个柱形图,横轴为特征重要性得分,纵轴为特征名称,用于展示机器学习模型中各个特征的重要性。
对比类分析的代码如下:
```
train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red'])
plt.title('Class Distribution')
plt.xlabel('Class')
plt.ylabel('Frequency')
plt.show()
```
这段代码会生成一个柱形图,展示训练数据中不同类别的样本数量分布情况。这个图可以用于判断数据集是否存在类别不平衡的情况,以及对模型的训练和评估结果进行解释。
import torch import torch.nn as nn import pandas as pd from sklearn.model_selection import train_test_split # 加载数据集 data = pd.read_csv('../dataset/train_10000.csv') # 数据预处理 X = data.drop('target', axis=1).values y = data['target'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) X_train = torch.from_numpy(X_train).float() X_test = torch.from_numpy(X_test).float() y_train = torch.from_numpy(y_train).float() y_test = torch.from_numpy(y_test).float() # 定义LSTM模型 class LSTMModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(LSTMModel, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out # 初始化模型和定义超参数 input_size = X_train.shape[1] hidden_size = 64 num_layers = 2 output_size = 1 model = LSTMModel(input_size, hidden_size, num_layers, output_size) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 100 for epoch in range(num_epochs): model.train() outputs = model(X_train) loss = criterion(outputs, y_train) optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') # 在测试集上评估模型 model.eval() with torch.no_grad(): outputs = model(X_test) loss = criterion(outputs, y_test) print(f'Test Loss: {loss.item():.4f}') 我有额外的数据集CSV,请帮我数据集和测试集分离
以下是将数据集和测试集分离的代码示例:
```python
import torch
import torch.nn as nn
import pandas as pd
from sklearn.model_selection import train_test_split
# 加载数据集
data = pd.read_csv('../dataset/train_10000.csv')
# 数据预处理
X = data.drop('target', axis=1).values
y = data['target'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train = torch.from_numpy(X_train).float()
X_test = torch.from_numpy(X_test).float()
y_train = torch.from_numpy(y_train).float()
y_test = torch.from_numpy(y_test).float()
```
以上代码中,我们使用了`sklearn`库的`train_test_split`函数将数据集分割成训练集和测试集。你可以根据需要调整`test_size`参数来确定测试集的比例。然后,我们将数据转换为`torch`张量以供模型使用。
希望这可以帮助到你!如果有任何其他问题,请随时问我。
阅读全文