max transformer
时间: 2023-10-28 14:05:30 浏览: 42
max transformer是指使用max pooling操作替代自注意力机制(self-attention)的transformer模型。在传统的transformer模型中,自注意力机制通过计算query和key之间的相似度来为value赋予权重,然后根据这些权重对value进行加权求和。而max transformer通过直接对每个维度上的query和key进行比较,选择最大值作为相似度,然后再通过最大值对应的value进行聚合。这种方法可以减少计算复杂度,并且在某些任务中取得了不错的效果。
相关问题
transformer in transformer解读
Transformer in Transformer是一种用于处理图像的神经网络架构。在这个架构中,有两个层级的Transformer块,分别是Outer Transformer和Inner Transformer。Outer Transformer处理图像的Patch级别信息,即将图像切分成多个Patch,并将每个Patch作为输入进行处理。而Inner Transformer则处理更细粒度的信息,即将每个Patch再次切分成更小的Patch,并将其与Outer Transformer的输出进行融合。这样,Transformer in Transformer能够同时捕捉到图像的整体特征和局部细节,提高了对图像的理解能力。
需要额外说明的是,Transformer模型最初是应用于自然语言处理领域的,但最近在计算机视觉领域也得到了广泛应用。因此,在涉及Transformer的图像处理论文中,可能会省略一些在自然语言处理领域已经形成共识的内容,这可能会使计算机视觉领域的研究人员感到困惑。但是,对于理解Transformer in Transformer这一概念,可以将其视为一种在图像领域应用Transformer的方法,通过组合Outer Transformer和Inner Transformer来提高图像处理的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [TNT-Transformer in Transformer](https://blog.csdn.net/MengYa_Dream/article/details/124591473)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [一文读懂transformer(CV专享)](https://blog.csdn.net/KANG157/article/details/111499713)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
nbs = 64 lr_limit_max = 1e-3 if optimizer_type == 'adam' else 1e-1 lr_limit_min = 1e-4 if optimizer_type == 'adam' else 5e-4 if backbone in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']: nbs = 256 lr_limit_max = 1e-3 if optimizer_type == 'adam' else 1e-1 lr_limit_min = 1e-5 if optimizer_type == 'adam' else 5e-4 Init_lr_fit = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max) Min_lr_fit = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)
这段代码的作用是根据模型的骨干网络类型、batch size、初始学习率(`Init_lr`)和最小学习率(`Min_lr`)等参数计算出当前的初始学习率(`Init_lr_fit`)和最小学习率(`Min_lr_fit`)。
具体来说:
- 首先根据模型的骨干网络类型(`backbone`)设置默认的 batch size(`nbs`)和最大学习率(`lr_limit_max`)、最小学习率(`lr_limit_min`);
- 如果骨干网络类型为 ViT、Swin Transformer 等,那么将 batch size 调整为 256,并进一步调整最大学习率和最小学习率的值;
- 根据当前的 batch size、初始学习率(`Init_lr`)和最小学习率(`Min_lr`),计算出当前的初始学习率(`Init_lr_fit`)和最小学习率(`Min_lr_fit`)。
总的来说,这段代码的作用是根据当前的训练参数计算出一个合适的初始学习率和最小学习率,以便用于模型的训练过程中的学习率调整。
阅读全文