采用C++实现置换流水车间调度问题数学模型并通过算例验证代码的正确性
时间: 2023-10-11 11:08:15 浏览: 100
置换流水车间调度问题是一个NP难问题,需要采用一些启发式算法或元启发式算法来求解。其中,最常用的启发式算法是遗传算法和禁忌搜索算法。下面是一个采用遗传算法求解置换流水车间调度问题的C++代码示例:
```c++
#include <iostream>
#include <algorithm>
#include <vector>
#include <random>
#include <chrono>
using namespace std;
// 定义工件类
class Job {
public:
int id; // 工件编号
int process[3]; // 该工件在三台机器上的加工时间
Job(int id, int p1, int p2, int p3) {
this->id = id;
this->process[0] = p1;
this->process[1] = p2;
this->process[2] = p3;
}
};
// 定义车间类
class Workshop {
public:
vector<Job> jobs; // 所有工件
int n; // 工件数量
Workshop(vector<Job>& jobs) {
this->jobs = jobs;
this->n = jobs.size();
}
// 计算某个解的目标函数值
int objectiveFunction(vector<int>& solution) {
int makespan = 0;
vector<int> finishTime(n);
for (int i = 0; i < n; i++) {
int job = solution[i]; // 第i个工件的编号
for (int j = 0; j < 3; j++) {
int machine = j + 1; // 第j台机器的编号
int processingTime = jobs[job].process[j];
int startTime = (i == 0) ? 0 : finishTime[solution[i - 1]]; // 开始时间
finishTime[job] = startTime + processingTime;
makespan = max(makespan, finishTime[job]);
}
}
return makespan;
}
};
// 定义遗传算法类
class GeneticAlgorithm {
public:
Workshop* workshop; // 车间
int populationSize; // 种群大小
double crossoverRate; // 交叉率
double mutationRate; // 变异率
int maxGeneration; // 最大迭代次数
GeneticAlgorithm(Workshop* workshop, int populationSize, double crossoverRate, double mutationRate, int maxGeneration) {
this->workshop = workshop;
this->populationSize = populationSize;
this->crossoverRate = crossoverRate;
this->mutationRate = mutationRate;
this->maxGeneration = maxGeneration;
}
// 初始化种群
vector<vector<int>> initializePopulation() {
vector<vector<int>> population;
for (int i = 0; i < populationSize; i++) {
vector<int> solution(workshop->n);
for (int j = 0; j < workshop->n; j++) {
solution[j] = j;
}
shuffle(solution.begin(), solution.end(), default_random_engine(chrono::system_clock::now().time_since_epoch().count()));
population.push_back(solution);
}
return population;
}
// 选择操作
vector<vector<int>> selection(vector<vector<int>>& population) {
vector<vector<int>> parents;
for (int i = 0; i < populationSize; i++) {
int a = rand() % populationSize;
int b = rand() % populationSize;
if (workshop->objectiveFunction(population[a]) < workshop->objectiveFunction(population[b])) {
parents.push_back(population[a]);
}
else {
parents.push_back(population[b]);
}
}
return parents;
}
// 交叉操作
vector<vector<int>> crossover(vector<vector<int>>& parents) {
vector<vector<int>> offspring;
for (int i = 0; i < populationSize; i += 2) {
if (rand() < crossoverRate * RAND_MAX) {
int r1 = rand() % workshop->n;
int r2 = rand() % workshop->n;
while (r2 == r1) {
r2 = rand() % workshop->n;
}
if (r1 > r2) {
swap(r1, r2);
}
vector<int> p1 = parents[i];
vector<int> p2 = parents[i + 1];
vector<int> o1(workshop->n), o2(workshop->n);
for (int j = r1; j <= r2; j++) {
o1[j] = p1[j];
o2[j] = p2[j];
}
int k1 = r2 + 1, k2 = r2 + 1;
for (int j = 0; j < workshop->n; j++) {
if (find(o1.begin(), o1.end(), p2[j]) == o1.end()) {
o1[k1++] = p2[j];
}
if (find(o2.begin(), o2.end(), p1[j]) == o2.end()) {
o2[k2++] = p1[j];
}
}
offspring.push_back(o1);
offspring.push_back(o2);
}
else {
offspring.push_back(parents[i]);
offspring.push_back(parents[i + 1]);
}
}
return offspring;
}
// 变异操作
void mutation(vector<vector<int>>& offspring) {
for (int i = 0; i < populationSize; i++) {
if (rand() < mutationRate * RAND_MAX) {
int r1 = rand() % workshop->n;
int r2 = rand() % workshop->n;
swap(offspring[i][r1], offspring[i][r2]);
}
}
}
// 更新种群
void updatePopulation(vector<vector<int>>& population, vector<vector<int>>& offspring) {
population.insert(population.end(), offspring.begin(), offspring.end());
sort(population.begin(), population.end(), [&](const vector<int>& a, const vector<int>& b) {
return workshop->objectiveFunction(a) < workshop->objectiveFunction(b);
});
population.resize(populationSize);
}
// 求解
vector<int> solve() {
vector<vector<int>> population = initializePopulation();
for (int i = 0; i < maxGeneration; i++) {
vector<vector<int>> parents = selection(population);
vector<vector<int>> offspring = crossover(parents);
mutation(offspring);
updatePopulation(population, offspring);
}
return population.front();
}
};
int main() {
vector<Job> jobs = {
Job(0, 2, 4, 3),
Job(1, 2, 3, 1),
Job(2, 3, 5, 2),
Job(3, 1, 4, 2),
Job(4, 3, 2, 1)
};
Workshop workshop(jobs);
GeneticAlgorithm ga(&workshop, 100, 0.8, 0.1, 1000);
vector<int> solution = ga.solve();
cout << "Solution: ";
for (int i : solution) {
cout << i << " ";
}
cout << endl;
cout << "Makespan: " << workshop.objectiveFunction(solution) << endl;
return 0;
}
```
上述代码采用遗传算法求解置换流水车间调度问题。其中,`Job`类表示工件,`Workshop`类表示车间,`GeneticAlgorithm`类表示遗传算法类。在`GeneticAlgorithm`类中,`initializePopulation()`方法用于初始化种群,`selection()`方法用于选择操作,`crossover()`方法用于交叉操作,`mutation()`方法用于变异操作,`updatePopulation()`方法用于更新种群,`solve()`方法用于求解。在主函数中,我们定义了一个包含5个工件的车间,并使用遗传算法求解最优调度方案。
阅读全文