使用python的opencv库自制TSPLIB,选点代码
时间: 2023-06-18 08:05:37 浏览: 83
用于处理 TSPLIB 文件的库_python_代码_下载
下面是使用Python的OpenCV库自制TSPLIB的选点代码:
```python
import cv2
import numpy as np
import random
# 读取图片
img = cv2.imread('your_image_path.jpg')
# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Canny边缘检测
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
# 霍夫直线变换,检测直线
lines = cv2.HoughLines(edges, 1, np.pi/180, 200)
# 绘制直线
for line in lines:
rho, theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
# 随机选取点
points = []
for i in range(10):
x = random.randint(0, img.shape[1])
y = random.randint(0, img.shape[0])
points.append((x, y))
cv2.circle(img, (x, y), 5, (0, 255, 0), -1)
# 保存选点结果
with open('your_tsp_file.tsp', 'w') as f:
f.write('NAME: your_tsp_file\n')
f.write('TYPE: TSP\n')
f.write(f'DIMENSION: {len(points)}\n')
f.write('EDGE_WEIGHT_TYPE: EUC_2D\n')
f.write('NODE_COORD_SECTION\n')
for i, point in enumerate(points):
f.write(f'{i+1} {point[0]} {point[1]}\n')
f.write('EOF\n')
# 显示结果
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码使用Canny边缘检测和霍夫直线变换检测图片中的直线,并随机选取10个点作为TSP问题的节点,然后将节点坐标保存到文件中。您可以根据需要修改代码以适应不同的图片和节点数量。
阅读全文