自适应的 Dropout 方法来动态调整 VGGCNN 网络的 Dropout 概率值
时间: 2023-06-18 08:02:55 浏览: 157
自适应的 Dropout 是一种能够动态调整 Dropout 概率值的方法,它可以根据网络的输入数据进行自适应地调整 Dropout 概率,从而提高网络的泛化能力和性能。
在 VGGCNN 网络中,我们可以使用自适应的 Dropout 方法来调整 Dropout 概率值。具体来说,我们可以在网络的每个卷积层和全连接层后面添加一个自适应的 Dropout 层。这个自适应的 Dropout 层可以根据当前批次的数据的统计信息来动态地调整 Dropout 概率值。例如,如果当前批次的数据中某些神经元的激活值比较大,则该神经元的 Dropout 概率会相应地增加,从而减少该神经元的过拟合风险。
具体而言,自适应的 Dropout 方法可以通过以下步骤来实现:
1. 在每个卷积层和全连接层后面添加一个自适应的 Dropout 层。
2. 在每个自适应的 Dropout 层里面,计算当前批次数据中每个神经元的均值和方差。
3. 根据每个神经元的均值和方差来计算 Dropout 概率值。
4. 使用计算出来的 Dropout 概率值来执行 Dropout 操作。
通过这种方式,我们可以根据网络当前的输入数据来动态地调整 Dropout 概率值,从而提高网络的泛化能力和性能。
相关问题
用 theano 库实现自适应的 Dropout 方法来动态调整 VGGCNN网络的Dropout 概率值。
实现自适应的 Dropout 方法来动态调整 VGGCNN网络的Dropout 概率值,需要分为以下几个步骤:
1. 定义VGGCNN网络并加入Dropout层。
2. 构建自适应的 Dropout 方法。
3. 基于自适应的 Dropout 方法动态调整 VGGCNN 网络的 Dropout 概率值。
4. 训练并测试 VGGCNN 网络。
下面是对每个步骤的详细介绍:
1. 定义VGGCNN网络并加入Dropout层。
首先,我们需要定义一个VGGCNN网络。在定义网络时,我们需要在每个卷积层后面加入一个 Dropout 层,代码如下:
```python
import theano.tensor as T
from theano import shared
import numpy as np
import lasagne
from lasagne.nonlinearities import softmax
from lasagne.layers import InputLayer, DropoutLayer, DenseLayer, NonlinearityLayer
from lasagne.layers import Conv2DLayer, MaxPool2DLayer, FlattenLayer
from lasagne.layers import batch_norm
class VGGCNN(object):
def __init__(self, input_shape=(None, 3, 32, 32), num_classes=10):
self.input_shape = input_shape
self.num_classes = num_classes
self.build_network()
def build_network(self):
self.net = {}
self.net['input'] = InputLayer(self.input_shape)
self.net['conv1_1'] = Conv2DLayer(self.net['input'], num_filters=64, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['conv1_2'] = Conv2DLayer(self.net['conv1_1'], num_filters=64, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['pool1'] = MaxPool2DLayer(self.net['conv1_2'], pool_size=2)
self.net['conv2_1'] = Conv2DLayer(self.net['pool1'], num_filters=128, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['conv2_2'] = Conv2DLayer(self.net['conv2_1'], num_filters=128, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['pool2'] = MaxPool2DLayer(self.net['conv2_2'], pool_size=2)
self.net['conv3_1'] = Conv2DLayer(self.net['pool2'], num_filters=256, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['conv3_2'] = Conv2DLayer(self.net['conv3_1'], num_filters=256, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['conv3_3'] = Conv2DLayer(self.net['conv3_2'], num_filters=256, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['pool3'] = MaxPool2DLayer(self.net['conv3_3'], pool_size=2)
self.net['conv4_1'] = Conv2DLayer(self.net['pool3'], num_filters=512, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['conv4_2'] = Conv2DLayer(self.net['conv4_1'], num_filters=512, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['conv4_3'] = Conv2DLayer(self.net['conv4_2'], num_filters=512, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['pool4'] = MaxPool2DLayer(self.net['conv4_3'], pool_size=2)
self.net['conv5_1'] = Conv2DLayer(self.net['pool4'], num_filters=512, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['conv5_2'] = Conv2DLayer(self.net['conv5_1'], num_filters=512, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['conv5_3'] = Conv2DLayer(self.net['conv5_2'], num_filters=512, filter_size=3, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['pool5'] = MaxPool2DLayer(self.net['conv5_3'], pool_size=2)
self.net['fc6'] = DenseLayer(self.net['pool5'], num_units=4096, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['drop6'] = DropoutLayer(self.net['fc6'], p=0.5)
self.net['fc7'] = DenseLayer(self.net['drop6'], num_units=4096, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
self.net['drop7'] = DropoutLayer(self.net['fc7'], p=0.5)
self.net['output'] = DenseLayer(self.net['drop7'], num_units=self.num_classes, nonlinearity=softmax, W=lasagne.init.GlorotUniform())
self.input_var = T.tensor4('input_var')
self.target_var = T.ivector('target_var')
```
2. 构建自适应的 Dropout 方法。
在构建自适应的 Dropout 方法时,我们需要定义一个 Dropout 层的更新函数。在更新函数中,我们可以根据网络的输出和目标值来动态调整 Dropout 概率值。具体实现如下:
```python
def adaptive_dropout(layer, p, x, target, update_fn=lasagne.updates.adam, update_params={'learning_rate': 0.001}):
# 计算当前层的输出
output = lasagne.layers.get_output(layer, x, deterministic=False)
# 计算当前层的目标值
target_output = T.zeros_like(output)
target_output = T.set_subtensor(target_output[T.arange(target.shape[0]), target], 1)
# 计算交叉熵误差
loss = lasagne.objectives.categorical_crossentropy(output, target_output).mean()
# 计算梯度
grads = T.grad(loss, wrt=layer.get_params(trainable=True))
# 计算当前层的 Dropout 概率值
p_shared = shared(p, name='p_shared')
new_p = p_shared - update_fn(grads, [p_shared], **update_params)[0]
# 更新 Dropout 概率值
layer.p = T.clip(new_p, 0.0, 0.5)
```
3. 基于自适应的 Dropout 方法动态调整 VGGCNN 网络的 Dropout 概率值。
在训练过程中,我们需要在每个 Dropout 层之后调用 adaptive_dropout() 函数来动态调整 Dropout 概率值。具体实现如下:
```python
def train(network, X_train, y_train, X_val, y_val, num_epochs=100, batch_size=128):
# 定义训练函数
prediction = lasagne.layers.get_output(network.net['output'], network.input_var, deterministic=False)
loss = lasagne.objectives.categorical_crossentropy(prediction, network.target_var)
loss = loss.mean() + 1e-4 * lasagne.regularization.regularize_network_params(network.net['output'], lasagne.regularization.l2)
params = lasagne.layers.get_all_params(network.net['output'], trainable=True)
updates = lasagne.updates.adam(loss, params)
train_fn = theano.function([network.input_var, network.target_var], loss, updates=updates)
# 定义验证函数
val_prediction = lasagne.layers.get_output(network.net['output'], network.input_var, deterministic=True)
val_loss = lasagne.objectives.categorical_crossentropy(val_prediction, network.target_var)
val_loss = val_loss.mean()
val_fn = theano.function([network.input_var, network.target_var], val_loss)
# 训练模型
for epoch in range(num_epochs):
train_loss = 0
train_batches = 0
# 动态调整 Dropout 概率值
adaptive_dropout(network.net['drop6'], 0.5, network.input_var, network.target_var)
adaptive_dropout(network.net['drop7'], 0.5, network.input_var, network.target_var)
# 训练模型
for batch in iterate_minibatches(X_train, y_train, batch_size):
inputs, targets = batch
train_loss += train_fn(inputs, targets)
train_batches += 1
# 计算验证误差
val_loss = 0
val_batches = 0
for batch in iterate_minibatches(X_val, y_val, batch_size):
inputs, targets = batch
val_loss += val_fn(inputs, targets)
val_batches += 1
# 输出训练进度
print("Epoch {} of {}:".format(epoch + 1, num_epochs))
print(" training loss:\t\t{:.6f}".format(train_loss / train_batches))
print(" validation loss:\t\t{:.6f}".format(val_loss / val_batches))
```
4. 训练并测试 VGGCNN 网络。
最后,我们可以使用 train() 函数来训练并测试 VGGCNN 网络。具体实现如下:
```python
# 加载数据集
X_train, y_train, X_val, y_val, X_test, y_test = load_dataset()
# 构建 VGGCNN 网络
network = VGGCNN(input_shape=(None, 3, 32, 32), num_classes=10)
# 训练并测试 VGGCNN 网络
train(network, X_train, y_train, X_val, y_val, num_epochs=100, batch_size=128)
test(network, X_test, y_test)
```
这样,我们就成功地实现了自适应的 Dropout 方法来动态调整 VGGCNN 网络的 Dropout 概率值。
theano实现使用自适应的 Dropout 方法来动态调整VGG网络的 Dropout 概率值
自适应 Dropout 方法可以根据网络的不同层次和输入数据的特征,动态调整 Dropout 概率值,从而提高模型的泛化能力。在 Theano 框架中,可以通过以下代码实现使用自适应 Dropout 方法来动态调整 VGG 网络的 Dropout 概率值:
```python
import theano
import theano.tensor as T
from theano.sandbox.rng_mrg import MRG_RandomStreams
def dropout(input, p, rng):
srng = MRG_RandomStreams(rng.randint(999999))
mask = srng.binomial(n=1, p=1-p, size=input.shape, dtype=theano.config.floatX)
output = input * mask
return output
def adaptive_dropout(input, p, rng):
p = 0.5 * p
if input.ndim == 4:
input_shape = input.shape
input = T.flatten(input, 2)
mean = T.mean(input, axis=1, keepdims=True)
var = T.var(input, axis=1, keepdims=True)
alpha = theano.shared(np.ones((input_shape[1], 1), dtype=theano.config.floatX))
rho = theano.shared(np.ones((input_shape[1], 1), dtype=theano.config.floatX))
alpha_new = T.nnet.sigmoid(T.dot(alpha, T.log(1+T.exp(rho*(var-mean**2)/mean**2))))
p_new = 1 - alpha_new
output = dropout(input, p_new, rng)
output_shape = (input_shape[0], input_shape[1], input_shape[2], input_shape[3])
output = T.reshape(output, output_shape)
return output
else:
return dropout(input, p, rng)
```
其中,`dropout` 函数实现了标准的 Dropout 方法;`adaptive_dropout` 函数实现了自适应 Dropout 方法。在自适应 Dropout 方法中,首先将 Dropout 概率值减半,然后计算输入数据在每个通道上的均值和方差,并通过一个神经网络计算每个通道的 `alpha` 值。最后,根据 `alpha` 值计算新的 Dropout 概率值,然后应用 Dropout。
在 VGG 网络中使用自适应 Dropout 方法,可以在每个卷积层和全连接层后添加一个自适应 Dropout 层,如下所示:
```python
import numpy as np
import lasagne
def build_vgg(input_var=None):
network = lasagne.layers.InputLayer(shape=(None, 3, 224, 224), input_var=input_var)
network = lasagne.layers.Conv2DLayer(network, num_filters=64, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.3, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=64, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.3, rng=np.random.RandomState(1234))
network = lasagne.layers.Pool2DLayer(network, pool_size=(2, 2), mode='max')
network = lasagne.layers.Conv2DLayer(network, num_filters=128, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=128, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Pool2DLayer(network, pool_size=(2, 2), mode='max')
network = lasagne.layers.Conv2DLayer(network, num_filters=256, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=256, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=256, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Pool2DLayer(network, pool_size=(2, 2), mode='max')
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Pool2DLayer(network, pool_size=(2, 2), mode='max')
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Pool2DLayer(network, pool_size=(2, 2), mode='max')
network = lasagne.layers.DenseLayer(network, num_units=4096)
network = adaptive_dropout(network, p=0.5, rng=np.random.RandomState(1234))
network = lasagne.layers.DenseLayer(network, num_units=4096)
network = adaptive_dropout(network, p=0.5, rng=np.random.RandomState(1234))
network = lasagne.layers.DenseLayer(network, num_units=1000, nonlinearity=lasagne.nonlinearities.softmax)
return network
```
其中,`adaptive_dropout` 函数的参数 `p` 表示初始的 Dropout 概率值,`rng` 表示随机数生成器。在 VGG 网络中,每个卷积层和全连接层后添加一个自适应 Dropout 层,并根据不同层次的特征动态调整 Dropout 概率值。这样可以提高模型的泛化能力,防止过拟合。
阅读全文