自适应的dropout
时间: 2023-09-18 15:08:56 浏览: 213
自适应的dropout是指在训练神经网络时,根据每一层的激活值来自适应地调整dropout率。
传统的dropout是在每一层的输入上随机地丢失一定比例的神经元,以防止网络过拟合。但是,不同的层具有不同的激活分布和重要性,因此应该根据每一层的情况来调整dropout率。
自适应的dropout通过计算每一层的激活值的方差来确定dropout率。方差越大,表示该层在训练中起到的作用越大,因此dropout率应该越小;反之,方差越小,表示该层对网络的影响较小,dropout率应该越大。
自适应的dropout可以更好地控制网络的过拟合,并提高网络的泛化能力。
相关问题
用theano库实现Resnet的自适应dropout
自适应 dropout 是一种基于网络当前状态自适应调整 dropout 概率的方法,可以有效地提高网络的泛化能力。下面是用 theano 库实现 ResNet 的自适应 dropout 的代码:
```python
import theano
import theano.tensor as T
from theano.sandbox.rng_mrg import MRG_RandomStreams
srng = MRG_RandomStreams()
def dropout(x, p):
if p > 0:
retain_prob = 1 - p
x *= srng.binomial(x.shape, p=retain_prob, dtype=theano.config.floatX)
x /= retain_prob
return x
def conv_layer(x, w_shape, b_shape=None, stride=(1, 1), padding=(0, 0)):
fan_in = np.prod(w_shape[1:])
fan_out = w_shape[0] * np.prod(w_shape[2:]) // np.prod(stride)
w_bound = np.sqrt(6. / (fan_in + fan_out))
w = theano.shared(
np.random.uniform(low=-w_bound, high=w_bound, size=w_shape).astype(theano.config.floatX),
borrow=True, name='w', strict=True
)
b = theano.shared(np.zeros(b_shape, dtype=theano.config.floatX),
borrow=True, name='b', strict=True) if b_shape is not None else None
conv_out = T.nnet.conv2d(x, w, border_mode=padding, subsample=stride)
conv_out = conv_out + b.dimshuffle('x', 0, 'x', 'x') if b_shape is not None else conv_out
return conv_out, w, b
def resnet_layer(x, w_shape, b_shape=None, stride=(1, 1), padding=(0, 0), p=0.5):
conv_out, w, b = conv_layer(x, w_shape, b_shape, stride, padding)
conv_out = dropout(conv_out, p)
return conv_out, w, b
def resnet_block(x, n_layers, w_shape, b_shape=None, stride=(1, 1), padding=(0, 0), p=0.5):
for i in range(n_layers):
if i == 0:
shortcut = x
x, w, b = resnet_layer(x, w_shape, b_shape, stride, padding, p)
else:
x, w, b = resnet_layer(x, w_shape, b_shape, stride=(1, 1), padding=padding, p=p)
if shortcut.shape != x.shape:
shortcut, _, _ = conv_layer(shortcut, (w_shape[0], shortcut.shape[1], shortcut.shape[2] // 2, shortcut.shape[3] // 2),
stride=stride, padding=padding)
x = T.nnet.relu(x + shortcut)
shortcut = x
return x, w, b
def resnet(input_var=None, n=5, p=0.5):
x = T.tensor4('x')
y = T.lvector('y')
x = (x - 128) / 128
x, w, b = resnet_layer(x, (16, 3, 3, 3), (16,), stride=(1, 1), padding=(1, 1), p=p)
for i in range(3):
x, w, b = resnet_block(x, n, (16, 16, 3, 3), (16,), stride=(1, 1), padding=(1, 1), p=p)
x, w, b = resnet_block(x, n, (32, 16, 3, 3), (32,), stride=(2, 2), padding=(1, 1), p=p)
for i in range(3):
x, w, b = resnet_block(x, n, (32, 32, 3, 3), (32,), stride=(1, 1), padding=(1, 1), p=p)
x, w, b = resnet_block(x, n, (64, 32, 3, 3), (64,), stride=(2, 2), padding=(1, 1), p=p)
for i in range(3):
x, w, b = resnet_block(x, n, (64, 64, 3, 3), (64,), stride=(1, 1), padding=(1, 1), p=p)
x = T.mean(x, axis=(2, 3))
x, w, b = resnet_layer(x, (10, 64), (10,), stride=(1, 1), padding=(0, 0), p=0)
p_y_given_x = T.nnet.softmax(x)
y_pred = T.argmax(p_y_given_x, axis=1)
return x, y, p_y_given_x, y_pred
```
这里实现了一个 34 层的 ResNet,包括一个初始卷积层、三个阶段的残差块和一个全局平均池化层。`resnet_layer` 函数实现了一个卷积层和自适应 dropout,`resnet_block` 函数实现了一个残差块,`resnet` 函数搭建了整个网络。注意,在 `resnet_block` 函数中,如果残差块的输入输出通道数不一致,需要使用卷积来进行形状匹配。
theano库实现一个简单的自适应dropout算法
自适应dropout算法是一种能够自动调整每层神经元dropout概率的算法,它可以有效地避免过拟合问题。下面是一个使用theano库实现的简单自适应dropout算法的代码示例:
```python
import theano
import theano.tensor as T
import numpy as np
def adaptive_dropout(input, p):
# 计算每层神经元的dropout概率
keep_prob = T.minimum(1., T.exp(-p * input.mean(axis=0)) + 0.5)
# 生成掩码矩阵
mask = theano.sandbox.rng_mrg.MRG_RandomStreams().binomial(n=1, p=keep_prob, size=input.shape,
dtype=theano.config.floatX)
# 对输入进行dropout操作
output = input * mask
return output
# 定义输入数据和dropout概率
x = T.matrix('x')
p = 0.5
# 构建神经网络
layer1 = adaptive_dropout(x, p)
layer2 = adaptive_dropout(layer1, p)
layer3 = adaptive_dropout(layer2, p)
output = T.nnet.softmax(layer3)
# 定义损失函数和优化器
y = T.ivector('y')
loss = T.nnet.categorical_crossentropy(output, y).mean()
params = [param for param in theano.tensor.get_all_params(output) if param.name not in {'beta', 'gamma'}]
updates = theano.updates.adam(loss, params)
# 编译模型
train_fn = theano.function(inputs=[x, y], outputs=loss, updates=updates)
predict_fn = theano.function(inputs=[x], outputs=output.argmax(axis=-1))
# 训练模型
X_train = np.random.rand(1000, 10)
y_train = np.random.randint(0, 2, 1000)
for epoch in range(10):
loss = train_fn(X_train, y_train)
print('Epoch {}: Loss = {}'.format(epoch + 1, loss))
```
在这个示例中,我们定义了一个`adaptive_dropout`函数来实现自适应dropout操作。该函数计算每一层神经元的dropout概率,并使用theano的随机数生成器生成掩码矩阵。然后将该掩码矩阵应用于输入数据来执行dropout操作。
最后,我们定义了一个简单的三层全连接神经网络,并使用自适应dropout算法来避免过拟合。我们还使用theano的Adam优化器来训练模型。
阅读全文