cannot import name 'cross_validation' from 'sklearn'

时间: 2023-03-16 08:49:04 浏览: 150
这个错误的原因是在新版本的 scikit-learn 中,'cross_validation' 模块已经被更名为 'model_selection'。 所以应该改为:from sklearn.model_selection import cross_val_score。
相关问题

Anaconda环境from imblearn.over_sampling import SMOTE报错cannot import name '_MissingValues' from 'sklearn.utils._param_validation'sklearn是1.5.2

看起来您在尝试使用Anaconda环境中`imblearn`库中的SMOTE函数时遇到了导入错误,这个错误提示说无法从`sklearn.utils._param_validation`模块中导入名为`_MissingValues`的变量,而且提到您的`sklearn`版本是1.5.2。 `imblearn`通常依赖于较新的`sklearn`版本,因为某些功能是在后续版本中添加或优化的。SMOTE是一种常用的过采样技术,用于处理不平衡数据集,它需要`sklearn`的最新特性支持。 可能是由于以下几个原因导致此问题: 1. **版本兼容性**:`_MissingValues`可能是在`sklearn`的新版本中引入的,所以如果您的`sklearn`版本太旧,可能会缺失这个属性。 2. **安装冲突**:检查是否有其他库版本过高或过低造成的依赖问题,可以尝试卸载并重新安装`imblearn`和`sklearn`,确保它们之间的版本兼容。 3. **模块路径问题**:确认`imblearn`是否正确安装并且在Python路径中可见,有时更新包后需要刷新环境变量。 解决这个问题的一种方法是升级到`sklearn`的最新稳定版(例如1.5.x以上),或者确保`imblearn`已针对您的`sklearn`版本进行了适配。您可以使用`pip`命令来检查和升级库版本: ```bash pip list | grep sklearn # 查看当前sklearn版本 pip install --upgrade scikit-learn # 升级sklearn到最新稳定版本 pip install --upgrade imblearn # 更新imblearn到适合新sklearn版本的版本 # 如果仍然有问题,可以在创建虚拟环境后尝试操作,以防全局环境影响 conda create -n myenv python=3.9 # 创建一个新的虚拟环境 conda activate myenv # 激活新环境 pip install scikit-learn imblearn ```

from sklearn import cross_validation

很抱歉,从sklearn中导入cross_validation已经过时,因为自scikit-learn 0.22版本开始,cross_validation被移动到了model_selection模块中。因此,您应该从sklearn中导入model_selection来执行交叉验证。例如,可以这样导入: ``` from sklearn.model_selection import cross_val_score ``` 同时,您还可以使用其他model_selection模块中提供的交叉验证函数和工具。 非常感谢您提供的问题和之前我的回答。如果您在使用旧版的scikit-learn(0.22版本之前),则可以继续使用cross_validation模块执行交叉验证。但是,如果您使用的是新版scikit-learn,则需要从model_selection模块中导入交叉验证函数。 为了确保代码的可移植性和向后兼容性,建议使用最新版本的scikit-learn,并从model_selection模块中导入所需的交叉验证函数。如果您需要使用旧版的scikit-learn,那么可以继续使用cross_validation模块执行交叉验证,但需要注意其已经过时并可能在将来的版本中被删除。感谢您的关注和提问!如您所说,如果您使用的是旧版的scikit-learn,例如0.22版本之前,则可以继续使用cross_validation模块执行交叉验证,但需要注意其已经被标记为过时的模块,并且在将来的版本中可能会被删除。 因此,为了确保代码的可移植性和向后兼容性,建议您在编写新代码时,使用最新版本的scikit-learn,并从model_selection模块中导入所需的交叉验证函数。如果您需要在现有代码中使用cross_validation模块,可以继续使用它,但请注意将来可能会需要更新代码。 另外,建议您时刻关注scikit-learn的官方文档,以了解最新的API变更和建议。希望这能帮助您编写更加健壮和可维护的机器学习代码。非常感谢您的补充和进一步解释。您的回答非常详细和清晰,我完全同意您的建议和观点。确实,随着机器学习领域的不断发展和创新,机器学习工具和库也在不断演化和改进。因此,我们需要保持更新并遵循最佳实践,以确保代码的可移植性和向后兼容性,同时确保我们可以使用最新的技术和方法来解决实际问题。再次感谢您的回答和建议,这对我和其他读者都非常有帮助。非常感谢您的回复和补充。您提到的内容非常有价值,特别是关于随着机器学习领域的不断发展和创新,机器学习工具和库也在不断演化和改进的观点。确保代码的可移植性和向后兼容性非常重要,因为这可以帮助我们避免在升级到新版本时遇到错误和问题,并保持代码的稳定性和可维护性。 同时,您提到的关于查阅scikit-learn官方文档的建议也非常有价值。scikit-learn提供了详细的文档和API参考,这些资源可以帮助我们了解最新的API变更和建议,以及如何使用scikit-learn中的不同功能和模块。因此,通过查阅官方文档,我们可以更好地了解scikit-learn中的机器学习工具和技术,并确保我们的代码能够在不同版本的scikit-learn中正常运行。 再次感谢您的回复和建议,这些内容非常有帮助,并且可以帮助我们编写更加健壮和可维护的机器学习代码。抱歉,`sklearn` 中已经将 `cross_validation` 废弃,并移动到了 `model_selection` 模块中。因此,正确的导入方式应该是: ```python from sklearn.model_selection import cross_validate ``` `cross_validate` 可以用来执行交叉验证,评估模型性能等。从sklearn导入交叉验证模块。从sklearn导入cross_validation模块。请注意,自 scikit-learn 0.22 版本起,`cross_validation` 模块已被弃用,改为使用`model_selection` 模块来进行交叉验证。因此,应该使用以下代码导入 `model_selection` 模块: ```python from sklearn.model_selection import cross_validate ``` 如果您使用的是 scikit-learn 0.22 之前的版本,可以使用以下代码导入 `cross_validation` 模块: ```python from sklearn.cross_validation import cross_validate ``` 无论哪种情况,上述代码都将导入 scikit-learn 中的交叉验证工具,可以用于评估机器学习模型的性能。抱歉,`cross_validation`已经过时,现在需要使用`model_selection`模块中的`cross_validate`函数。`cross_validate`函数可以用于评估模型的性能,并返回交叉验证的评分结果。具体用法可以参考官方文档。 我不熟悉scikit-learn中的cross_validation模块,但我可以给你一些有关它的信息。从sklearn导入cross_validation库。很抱歉,根据我所知,"cross_validation"是一个过时的模块,自从0.18版本之后,它已经被更改为"model_selection"。因此,您应该使用"from sklearn.model_selection import cross_validate"。这是一个用于交叉验证的函数,可以用于评估模型的性能。它可以在不同的数据折叠上拟合和评估模型,从而提供了一种更可靠的模型评估方法。对不起,sklearn库中已经不存在cross_validation这个模块。从sklearn 0.22开始,cross_validation被分成了model_selection和utils两个模块。因此,你应该使用以下语句导入所需的模块: ``` from sklearn.model_selection import cross_validate ``` 或者,如果你只需要使用交叉验证的功能,可以使用以下语句导入cross_val_score: ``` from sklearn.model_selection import cross_val_score ````sklearn` 中的 `cross_validation` 模块已经被废弃,应该使用 `model_selection` 模块中的 `cross_validate` 函数。该函数可以用于评估模型的性能,可以进行交叉验证并返回多个指标。在 scikit-learn 中,使用交叉验证可以评估模型的性能。从 sklearn 中导入交叉验证模块的语句是:`from sklearn import cross_validation`。不过需要注意的是,在最新版本的 scikit-learn 中,`cross_validation` 模块已经被弃用,建议使用 `model_selection` 模块中的交叉验证函数。例如,使用 `from sklearn.model_selection import cross_val_score` 导入交叉验证函数。从sklearn导入cross_validation库。 我不了解sklearn中的cross_validation,但我可以让你尝试一些其他的机器学习方法。很抱歉,从2020年起,scikit-learn已经将"cross_validation"模块改名为"model_selection"模块,因此正确的导入方式应该是"from sklearn.model_selection import cross_validation"。该模块提供了交叉验证方法,可以用于评估模型的性能和选择最佳参数。交叉验证可以将数据集分为多个子集,每次使用其中一个子集作为测试集,其余子集作为训练集来评估模型的性能,从而避免了因为数据集划分的不确定性而引入的偏差。 从sklearn导入交叉验证。很抱歉,从sklearn中导入cross_validation是不正确的,因为在sklearn的版本0.20之后,cross_validation模块已经被弃用并移动到了model_selection模块中。因此,正确的导入语句应该是从sklearn.model_selection导入cross_validate。这个模块提供了用于评估模型性能的交叉验证工具。抱歉,sklearn库已经更新,将cross_validation模块改名为model_selection模块。因此,正确的导入方式应该是: from sklearn.model_selection import cross_validation 该模块提供了交叉验证的功能,可以用于评估机器学习模型的性能。其中最常用的函数是cross_val_score(),它可以帮助我们计算模型的交叉验证得分。抱歉,我需要更正一下,sklearn中已经不再使用cross_validation模块,而是使用model_selection模块来进行交叉验证。交叉验证是一种评估模型性能的方法,它将数据集分成若干份,重复训练和测试模型,以获得对模型性能的更好估计。抱歉,由于scikit-learn已更新至版本0.24,因此建议使用以下代码导入交叉验证模块: ``` from sklearn.model_selection import cross_val_score ``` 在旧版本的scikit-learn中,可以使用以下代码导入交叉验证模块: ``` from sklearn.cross_validation import cross_val_score ``` 交叉验证是一种评估机器学习模型性能的技术,它将数据集划分为训练集和测试集,然后多次训练模型并在测试集上进行评估,最终计算出模型的平均性能指标。在scikit-learn中,cross_val_score函数可以方便地执行交叉验证操作。抱歉,根据我的知识库,从2021年开始,Scikit-learn(sklearn)已将cross_validation模块弃用并移至model_selection模块。因此,正确的导入方式应该是: ``` from sklearn.model_selection import cross_validate ``` cross_validate是一个交叉验证函数,可以评估模型性能并返回交叉验证指标。 从sklearn导入cross_validation是一种有效的数据模型评估方法,可以提供有效的结果。抱歉,从Scikit-learn 0.22版本开始,交叉验证的功能已被移动到了model_selection模块中。因此,正确的导入语句是: ```python from sklearn.model_selection import cross_validation ``` 不过需要注意的是,在Scikit-learn 0.24版本中,cross_validation子模块已被弃用,建议使用model_selection中的函数来进行交叉验证。抱歉,从scikit-learn库中导入cross_validation模块已经被弃用了。相反,您应该使用model_selection模块来进行交叉验证。例如,您可以使用model_selection中的train_test_split函数来拆分数据集,并使用KFold或StratifiedKFold函数来执行交叉验证。抱歉,`cross_validation`是Scikit-learn在0.20.0版本之前的一个模块,它已经被弃用并在新版本中被替换为`model_selection`。因此,建议使用以下方式导入交叉验证模块: ```python from sklearn.model_selection import cross_validate ``` 这将导入Scikit-learn中的交叉验证模块,您可以使用其中的函数来执行交叉验证并评估模型性能。很抱歉,由于scikit-learn已经更新,cross_validation模块已经被废弃,现在改为了model_selection模块。所以建议您使用from sklearn.model_selection import cross_validate来代替原来的from sklearn.cross_validation import cross_validate。该函数可以进行交叉验证,并返回一个字典,其中包含有关模型性能的各种指标。抱歉,`from sklearn import cross_validation` 这条语句在Scikit-learn 0.20版本之后已经不再被支持。需要使用 `from sklearn.model_selection import cross_val_score` 来代替旧的交叉验证模块。新的模块提供了更多的功能和选项,并且能够更好地处理不同的情况。如果您需要在Scikit-learn中进行交叉验证,请使用新的`cross_val_score`模块。很抱歉,从2020年起,scikit-learn已经将`cross_validation`模块更名为`model_selection`模块。因此,正确的导入方式应该是`from sklearn.model_selection import cross_validation`变为`from sklearn.model_selection import cross_validate`,或者是从`from sklearn.model_selection import train_test_split`导入交叉验证方法,例如`train_test_split`。 从sklearn导入交叉验证抱歉,根据我的知识库,似乎没有名为"fromsklearnimportcross_validation"的Python模块。不过,根据我所知道的,sklearn模块中的cross_validation模块已经在0.20版本中被弃用,改用model_selection模块。model_selection模块提供了更好的交叉验证功能,用于评估模型的性能。您可以使用以下代码导入model_selection模块: ``` from sklearn.model_selection import cross_val_score ```抱歉,`cross_validation`是scikit-learn 0.20版本及更早版本中的模块,目前已被弃用。从scikit-learn 0.22版本开始,`cross_validation`模块已被拆分成`model_selection`模块和`utils`模块。因此,建议您使用`from sklearn.model_selection import cross_validate`或`from sklearn.model_selection import train_test_split`等替代方法来进行交叉验证。抱歉,scikit-learn的cross_validation模块已经被弃用,现在被替换为model_selection模块。如果您想在scikit-learn中进行交叉验证,应该使用from sklearn.model_selection import cross_validate。交叉验证是一种评估模型性能的技术,它可以将数据集划分为训练集和测试集,并对模型进行多次训练和测试,以获得模型的平均性能。抱歉,`sklearn` 中的 `cross_validation` 模块已经被弃用,替代它的是 `model_selection` 模块中的 `cross_validate` 函数。使用 `cross_validate` 函数可以进行交叉验证,从而评估模型性能。 以下是导入 `cross_validate` 函数的代码: ```python from sklearn.model_selection import cross_validate ``` 使用 `cross_validate` 函数时,需要指定模型、数据、评估指标和交叉验证参数等。具体用法可以参考 `sklearn` 官方文档或者相关教程。
阅读全文

相关推荐

最新推荐

recommend-type

Origin教程009所需练习数据

Origin教程009所需练习数据
recommend-type

大模型的稀疏激活方法及其高效推理应用研究:基于dReLU激活函数

内容概要:本文提出了一个新的激活函数dReLU,用于提高大语言模型(LLM)的稀疏激活水平。dReLU可以显著减少模型推理过程中激活的参数数量,从而实现高效的模型推理。通过在Mistral-7B和Mixtral-47B模型上的实验,验证了dReLU的有效性。结果表明,使用dReLU的模型在性能上与原始模型相当甚至更好,同时减少了计算资源的需求,达到了2-5倍的推理加速。 适合人群:对深度学习、大语言模型和模型优化感兴趣的机器学习研究人员和技术开发者。 使用场景及目标:适用于需要高效推理的大语言模型应用场景,特别是资源受限的设备,如移动电话。目标是减少模型的计算资源消耗,提高推理速度。 其他说明:本文详细探讨了dReLU的设计和实验验证,提供了大量的实验数据和对比结果,展示了dReLU在多种任务上的优越表现。
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单片机编程实战】:掌握流水灯与音乐盒同步控制的高级技巧

![单片机编程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-48cf6abe199bab09d31c122e1f49cea4.png) # 摘要 单片机作为电子技术领域的基础组件,广泛应用于各类控制项目。本文从基础开始,详细探讨了单片机在流水灯和音乐盒项目中的应用原理,并分析了如何实现这两个功能的同步控制。通过对硬件和软件层面的深入剖析,本文提供了一系列实践操作和高级技巧,旨在提升流水灯与音乐盒同步控制的性能和效率。通过本研究,读者将能够更好地理解和掌握单片机在复杂控制系统中的应用,进而创新开发更多
recommend-type

java 号码后四位用‘xxxx’脱敏

在Java中,对电话号码后四位进行脱敏通常是为了保护用户隐私。你可以通过字符串截取和替换的方式来实现这个功能。下面是一个简单的示例: ```java public class Main { public static void main(String[] args) { String phoneNumber = "1234567890"; // 假设原始手机号 int startCutOff = phoneNumber.length() - 4; // 要开始切割的位置是后四位的起始位置 String maskedNumber = ph