帮我写用朴素贝叶斯分类器对手写数字进行识别的python代码不使用库函数
时间: 2024-05-05 11:17:54 浏览: 92
当然可以帮您写这个代码。以下是一个简单的手写数字识别的朴素贝叶斯分类器Python代码,不使用库函数:
```
import numpy as np
# 加载数据
def load_data(path):
with open(path, 'r') as f:
data = f.readlines()
X = []
y = []
for line in data:
line = line.strip().split(',')
y.append(int(line[0]))
X.append([int(i) for i in line[1:]])
return np.array(X), np.array(y)
# 训练朴素贝叶斯分类器
def train(X_train, y_train):
num_samples, num_features = X_train.shape
num_classes = len(set(y_train))
# 计算每个类别中每个特征的均值和标准差
mean = np.zeros((num_classes, num_features))
std = np.zeros((num_classes, num_features))
for i in range(num_classes):
X_i = X_train[y_train == i]
mean[i, :] = X_i.mean(axis=0)
std[i, :] = X_i.std(axis=0)
# 计算每个类别的先验概率
prior = np.zeros(num_classes)
for i in range(num_classes):
prior[i] = len(X_train[y_train == i]) / float(num_samples)
return mean, std, prior
# 预测
def predict(X, mean, std, prior):
num_samples, num_features = X.shape
num_classes = len(prior)
# 计算每个样本在每个类别下的概率
likelihood = np.zeros((num_samples, num_classes))
for i in range(num_classes):
likelihood[:, i] = np.sum(-0.5 * ((X - mean[i, :]) / std[i, :]) ** 2 - 0.5 * np.log(2 * np.pi * std[i, :]), axis=1)
# 计算后验概率
posterior = np.zeros((num_samples, num_classes))
for i in range(num_classes):
posterior[:, i] = likelihood[:, i] + np.log(prior[i])
# 返回每个样本最有可能属于哪个类别
return np.argmax(posterior, axis=1)
# 测试
def test(X_test, y_test, mean, std, prior):
y_pred = predict(X_test, mean, std, prior)
acc = np.mean(y_pred == y_test)
return acc
# 加载数据集
X_train, y_train = load_data('train.csv')
X_test, y_test = load_data('test.csv')
# 训练模型
mean, std, prior = train(X_train, y_train)
# 测试模型
acc = test(X_test, y_test, mean, std, prior)
print('Accuracy:', acc)
```
希望能够帮到您!如果您还有其他问题,可以继续问我。
阅读全文