请用python编写绘图显示relu激活函数的代码

时间: 2024-05-16 11:16:09 浏览: 81
好的,我可以为你提供绘制ReLU激活函数的Python代码。我们将使用Matplotlib库进行绘图。 ```python import numpy as np import matplotlib.pyplot as plt def relu(x): return np.maximum(0,x) x = np.linspace(-10, 10, 100) y = relu(x) plt.plot(x, y) plt.title('ReLU Activation Function') plt.xlabel('Input') plt.ylabel('Output') plt.show() ``` 解释一下代码: 1. 我们首先定义了一个名为`relu`的函数,它接受一个输入x并返回ReLU激活函数的输出。我们在这里使用NumPy库中的`maximum`函数,以确保输出值不会小于零。 2. 接下来,我们使用`linspace`函数创建了一个在-10和10之间均匀分布的100个值的数组,这些值将作为ReLU函数的输入。 3. 我们将上述数组传递给`relu`函数,以获取相应的输出值,并将它们存储在`y`变量中。 4. 最后,我们使用Matplotlib库的`plot`函数绘制了ReLU函数的输入与输出,并添加了一些标签和标题。最后,我们使用`show`函数显示图形。 希望这可以帮助你!
相关问题

绘制relu激活函数python代码,并显示制图人易宣齐

下面是Python中绘制ReLU激活函数的代码,并显示制图人易宣齐: ```python import matplotlib.pyplot as plt import numpy as np def relu(x): """ ReLU激活函数 """ return np.maximum(0, x) x = np.arange(-5, 5, 0.1) y = relu(x) plt.plot(x, y) plt.title('ReLU Activation Function') plt.xlabel('Input') plt.ylabel('Output') plt.grid(True) plt.text(-4, 4, 'Made by Yi Xuanqi') plt.show() ``` 该代码在绘制ReLU激活函数的图像的基础上,使用了plt.text函数在图像上添加了文本信息“Made by Yi Xuanqi”,以显示制图人易宣齐的信息。其他部分的代码与之前的示例相同。运行该代码,将会得到一个带有制图人信息的ReLU激活函数的图像。

swish和silu激活函数

Swish和SiLU都是非线性激活函数,它们在神经网络中被用作替代ReLU激活函数的选项。 Swish激活函数是一种平滑的非线性函数,数学表达式与Sigmoid函数类似,但其计算速度更快、数值稳定性更好。 Swish函数在某些情况下可以提高神经网络的准确性,但在嵌入式移动设备上的计算成本较高。为了解决这个问题,hardswish激活函数被提出,它是对swish函数的改进,具有更高的计算速度和更好的数值稳定性,适合在嵌入式移动设备上使用。 SiLU(Sigmoid Linear Unit)激活函数,也被称为SWish激活函数,是一种平滑的非单调函数,由于其数学表达式与Sigmoid函数相关,因此也具有类似于Swish函数的特点。SiLU激活函数的优势在于它能够在一定程度上提高网络的准确性,并且可以在ReLU的优化实现下实现,避免了梯度消失等问题。 总而言之,Swish和SiLU激活函数都是用来提高神经网络性能的替代ReLU函数的选项,它们在计算速度、数值稳定性和准确性等方面具有优势,并且可以在嵌入式移动设备上使用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【深度学习】之激活函数篇[Sigmoid、tanh、ReLU、Leaky ReLU、Mish、Hardswish、SiLU]附绘图Python代码。](https://blog.csdn.net/weixin_46716951/article/details/124292876)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

相关推荐

该段代码为什么没有输出图像 def plot_model_history(model_history): """ Plot Accuracy and Loss curves given the model_history """ fig, axs = plt.subplots(1, 2, figsize=(15, 5)) # summarize history for accuracy axs[0].plot(range(1, len(model_history.history['acc']) + 1), model_history.history['acc']) axs[0].plot(range(1, len(model_history.history['val_acc']) + 1), model_history.history['val_acc']) axs[0].set_title('Model Accuracy') axs[0].set_ylabel('Accuracy') axs[0].set_xlabel('Epoch') axs[0].set_xticks(np.arange(1, len(model_history.history['acc']) + 1), len(model_history.history['acc']) / 10) axs[0].legend(['train', 'val'], loc='best') # summarize history for loss axs[1].plot(range(1, len(model_history.history['loss']) + 1), model_history.history['loss']) axs[1].plot(range(1, len(model_history.history['val_loss']) + 1), model_history.history['val_loss']) axs[1].set_title('Model Loss') axs[1].set_ylabel('Loss') axs[1].set_xlabel('Epoch') axs[1].set_xticks(np.arange(1, len(model_history.history['loss']) + 1), len(model_history.history['loss']) / 10) axs[1].legend(['train', 'val'], loc='best') fig.savefig('plot.png') plt.show() # Create the model model = Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1))) model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(1024, activation='relu')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(7, activation='softmax')) # emotions will be displayed on your face from the webcam feed model.build(input_shape=(32, 48, 48, 1)) model.load_weights( r'D:\pythonProject\model.h5')

最新推荐

recommend-type

2023-04-06-项目笔记 - 第二百六十一阶段 - 4.4.2.259全局变量的作用域-259 -2025.09.19

2023-04-06-项目笔记-第二百六十一阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.259局变量的作用域_259- 2024-09-19
recommend-type

采用Spring+Struts2+Hibernate框架,实现一个仿天猫购物网站的web工程(毕设&课设&实训&大作业&竞赛&项

项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全领域),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助。 【资源内容】:包含完整源码+工程文件+说明(如有)等。答辩评审平均分达到96分,放心下载使用!可轻松复现,设计报告也可借鉴此项目,该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的。 【提供帮助】:有任何使用问题欢迎随时与我联系,我会及时解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 下载后请首先打开README文件(如有),项目工程可直接复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用。
recommend-type

人工智能赋能数据中心的绿色节能策略

本文阐述了人工智能在数据中心节能应用领域的理论与实践,通过介绍机器学习和基于物理机理模型的人工智能节能技术的应用情况,展示了如何利用AI技术来提升数据中心能源效率,减少PUE。并指出基于大数据分析的智能运维方法能优化数据中心冷却系统的运行状态,从而达成绿色节能目的;同时也强调了未来的节能系统发展趋势及标准化推进措施等重要方向。 适用人群:数据中心管理人员,环保工作者,信息和通信技术行业的专业人士。 使用场景及目标:适用于那些希望利用AI和其他技术优化其数据中心效能的企业;通过技术手段达到减少能耗、提升工作效率的目的。 其他:随着全球对环境友好技术的关注增加,在数据中心的建设和运维过程中融合AI等新技术已经成为必然趋势。
recommend-type

基于java的网上球鞋竞拍系统设计与实现.docx

基于java的网上球鞋竞拍系统设计与实现.docx
recommend-type

C语言入门教程.zip

【c语言入门】 静态库、动态链接库、include、makefile、io、文件操作函数、管道原理及应用、简单的数据结构
recommend-type

深入理解23种设计模式

"二十三种设计模式.pdf" 在软件工程中,设计模式是解决常见问题的可重用解决方案,它们代表了在特定上下文中被广泛接受的、经过良好验证的最佳实践。以下是二十三种设计模式的简要概述,涵盖了创建型、结构型和行为型三大类别: A. 创建型模式: 1. 单例模式(Singleton):确保一个类只有一个实例,并提供全局访问点。避免多线程环境下的并发问题,通常通过双重检查锁定或静态内部类实现。 2. 工厂方法模式(Factory Method)和抽象工厂模式(Abstract Factory):为创建对象提供一个接口,但允许子类决定实例化哪一个类。提供了封装变化的平台,增加新的产品族时无须修改已有系统。 3. 建造者模式(Builder):将复杂对象的构建与表示分离,使得同样的构建过程可以创建不同的表示。适用于当需要构建的对象有多个可变部分时。 4. 原型模式(Prototype):通过复制现有的对象来创建新对象,减少了创建新对象的成本,适用于创建相似但不完全相同的新对象。 B. 结构型模式: 5. 适配器模式(Adapter):使两个接口不兼容的类能够协同工作。通常分为类适配器和对象适配器两种形式。 6. 代理模式(Proxy):为其他对象提供一种代理以控制对这个对象的访问。常用于远程代理、虚拟代理和智能引用等场景。 7. 外观模式(Facade):为子系统提供一个统一的接口,简化客户端与其交互。降低了系统的复杂度,提高了系统的可维护性。 8. 组合模式(Composite):将对象组合成树形结构以表示“部分-整体”的层次结构。它使得客户代码可以一致地处理单个对象和组合对象。 9. 装饰器模式(Decorator):动态地给对象添加一些额外的职责,提供了比继承更灵活的扩展对象功能的方式。 10. 桥接模式(Bridge):将抽象部分与实现部分分离,使它们可以独立变化。实现了抽象和实现之间的解耦,使得二者可以独立演化。 C. 行为型模式: 11. 命令模式(Command):将请求封装为一个对象,使得可以用不同的请求参数化其他对象,支持撤销操作,易于实现事件驱动。 12. 观察者模式(Observer):定义对象间的一对多依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。 13. 迭代器模式(Iterator):提供一种方法顺序访问聚合对象的元素,而不暴露其底层表示。Java集合框架中的迭代器就是典型的实现。 14. 模板方法模式(Template Method):定义一个操作中的算法骨架,而将一些步骤延迟到子类中。使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。 15. 访问者模式(Visitor):表示一个作用于某对象结构中的各元素的操作。它可以在不改变各元素的类的前提下定义作用于这些元素的新操作。 16. 责任链模式(Chain of Responsibility):避免将处理逻辑硬编码在一个对象中,将一系列的对象链接起来,形成一条链,沿着链传递请求,直到某个对象处理该请求。 17. 状态模式(State):允许一个对象在其内部状态改变时改变它的行为,对象看起来似乎改变了它的类。 18. 策略模式(Strategy):定义了一系列的算法,并将每一个算法封装起来,使它们可以相互替换。策略对象改变算法的变化,可以影响使用算法的类。 19. 备忘录模式(Memento):在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态,以便以后恢复对象的状态。 20. 解释器模式(Interpreter):提供一个语言的文法表示,并定义了一个解释器,用于解释语言中的句子。 设计模式是软件开发中的一种经验总结,它们可以帮助我们编写更加灵活、可扩展和可维护的代码。理解和掌握这些设计模式,对于提高软件设计能力、优化代码结构、减少重复工作具有重要意义。在实际开发中,根据具体场景选择合适的设计模式,可以使代码更具可读性和可复用性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【编程实战】:打造健壮的string to int转换函数

![string to int](https://d8it4huxumps7.cloudfront.net/uploads/images/64f6cb6175ee2_type_casting_type_conversion_in_c_6.jpg) # 1. 转换函数的重要性与应用场景 在软件开发中,数据类型的转换是一个不可或缺的过程。特别是在处理用户输入、数据交换和数据存储时,字符串到整数(string to int)的转换函数是应用最广泛的转换操作之一。这一转换过程不仅对数据准确性至关重要,而且在确保系统性能和处理异常输入方面扮演着关键角色。 转换函数不仅仅是一个简单的数据类型转换,它还
recommend-type

Win11离线安装net framework 3.5方法

在Windows 11上安装.NET Framework 3.5的离线方法并不直接支持,因为Microsoft从Windows 8.1开始就停止了对.NET 3.5的正式支持,并且从Windows 10 Fall Creators Update之后不再提供.net framework的离线安装包。然而,如果你确实需要这个版本,你可以尝试以下步骤,但这可能会有一些风险: 1. **下载安装文件**:虽然官方渠道不再提供,你可以在一些技术论坛或第三方网站找到旧版的.NET Framework ISO镜像或者安装文件,但请注意这可能不是微软官方发布的,可能存在兼容性和安全性问题。 2. **创建
recommend-type

制作与调试:声控开关电路详解

"该资源是一份关于声控开关制作的教学资料,旨在教授读者如何制作和调试声控开关,同时涵盖了半导体三极管的基础知识,包括其工作原理、类型、测量方法和在电路中的应用。" 声控开关是一种利用声音信号来控制电路通断的装置,常用于节能照明系统。在制作声控开关的过程中,核心元件是三极管,因为三极管在电路中起到放大和开关的作用。 首先,我们需要理解三极管的基本概念。三极管是电子电路中的关键器件,分为两种主要类型:NPN型和PNP型。它们由两个PN结构成,分别是基极(b)、集电极(c)和发射极(e)。电流从发射极流向集电极,而基极控制这个电流。NPN型三极管中,电流从基极到发射极是正向的,反之对于PNP型。 在选择和测试三极管时,要关注其参数,如电流放大系数β,它决定了三极管放大电流的能力。例如,90××系列的三极管,如9013、9012、9014和9018,分别对应不同特性的NPN型和PNP型三极管。此外,还有不同封装形式,如塑料封装或金属封装,以及不同功能的标识,如开关管、低频小功率管等。 在声光控开关电路中,声控部分通常涉及麦克风或其他声音传感器,当接收到特定音量或频率的声音时,会触发信号。这个信号通过三极管进行放大,进而控制可控硅或场效应管,使电路闭合,从而开启负载(如照明设备)。照明时间控制在1分钟内,这可能涉及到延时电路的设计,如使用定时器芯片。 在实际操作中,需要用到的工具包括示波器来测量三极管的特性曲线,确保其工作在正确的区域。电路安装和调试则要求对电路原理有深入的理解,包括放大电路的分析和元件的正确连接。 制作声控开关不仅是学习电子技术的一种实践方式,也是理解半导体器件工作原理的良好途径。通过这样的项目,不仅可以提升动手能力,还能增强对基础电子学理论的理解。