s = abs(fft2(f)).^2; %imshow(f,[]);figure;mesh(S); [M, N] = size(s); % Maximum radius that guarantees a circle centered at (x0, y0) that % does not exceed the boundaries of S. rmax = min(M, N); [U,V]=meshgrid(1:rmax,1:rmax); S = s(1:rmax,1:rmax); % Compute isotropy SU = U.^2.*S; SU = sum(SU(:)); SV = V.^2.*S; SV = sum(SV(:)); SUV = U.*V.*S; SUV = sum(SUV(:)); iso = (SU-SV)/sqrt((SU+SV)^2-4.*SUV);%方向 w = 1/sqrt((SU+SV)/sum(S(:)));%相关长度 s = log(s); t(1) = w; t(2) = iso;转为Python代码

时间: 2024-04-05 09:29:02 浏览: 12
import numpy as np def compute_isotropy(f): s = np.abs(np.fft.fft2(f))**2 M, N = s.shape rmax = min(M, N) U, V = np.meshgrid(np.arange(1, rmax+1), np.arange(1, rmax+1)) S = s[:rmax, :rmax] SU = np.sum(U**2 * S) SV = np.sum(V**2 * S) SUV = np.sum(U * V * S) iso = (SU - SV) / np.sqrt((SU + SV)**2 - 4 * SUV) w = 1 / np.sqrt((SU + SV) / np.sum(S)) s = np.log(s) return w, iso
相关问题

s = exp((-dz*1i/4)*(Kx.^2+Ky.^2)); uw=fftshift(fft2(u)); for j=1:K2+1 tic; Temp=uw.*s; Temp=ifft2(fftshift(Temp)); ne=80e-15.*2.88e-99.*(0.5.*epsilon.*c.*abs(Temp/100).^2).^8.*0.2.*2.7e19;%多光子 vm=e.^2.*w0^2.*ne.*1e6/epsilon/c^2/me; % vmm(j)=max(max(vm)); v1=k0.^2.*w0.^2.*chi3.*abs(Temp).^2; % v11(j)=max(max(v1)); V=v1-vm; % V=0 Temp=exp(dz*1i*V).*Temp; Temp=fftshift(fft2(Temp)); uw=(Temp).*s; u=ifft2(fftshift(uw)); II=0.5.*epsilon.*c.*abs(u).^2; k(j,:)=II(:,(K1+1)/2); % p(j,:,:)=u; toc; j end

这段代码主要是用来模拟光在介质中传播的过程,其中包括: 1. 对输入场u进行傅里叶变换,并乘以一个相位因子s; 2. 计算介质中的等离子体密度ne和光速度vm; 3. 计算非线性折射率v1,并通过v1和vm计算出光传播过程中的势能V; 4. 根据势能V对输入场u进行相位调制,得到输出场Temp; 5. 对输出场Temp进行傅里叶变换,并乘以相位因子s,得到更新后的输入场u; 6. 计算输入场u对应的光强度II,并将其保存在矩阵k中; 7. 进行多次迭代,直到计算完成。 具体实现中,代码中的变量含义如下: - dz:传播距离; - Kx、Ky:空间频率; - uw:输入场u的傅里叶变换; - s:相位因子; - ne:等离子体密度; - epsilon:介电常数; - c:光速; - vm:光速度; - w0:激光束腰半径; - me:电子质量; - chi3:非线性折射率; - v1:非线性折射率; - V:势能; - Temp:输出场; - II:输出场对应的光强度; - k:光强度矩阵。 如果你有更具体的问题,欢迎继续提问。

% 定义物理常数和空间/时间离散化格点 Ld = 1e4; % 色散长度 T0 = 1e-3; % 色散时间 beta2 = -1; % 群速度色散参数 N = 1; % 非线性折射率 alpha = 0; % 光纤衰减常数 A0 = 1; % 入射光强 N = 2^8; % 空间离散化格点数 M = 500; % 时间离散化格点数 L = 10*pi*Ld; % 空间总长度 T = Ld/T0*L; % 时间总长度 tau = T/M; % 时间步长 xi = L/N; % 空间步长 t = 0:tau:T; % 时间坐标 x = (-N/2:N/2-1)*xi; % 空间坐标 k = pi/L*[-N/2:N/2-1]; % 傅里叶波数 % 初始化光波的初始条件 U = A0*sech(x).'; % 用分步傅里叶方法求解本征值问题 L1 = 1j*beta2/(2*Ld)*k.^2; % 线性演化算子 L2 = fftshift(-1i*x); % 一阶非线性演化算子 for n = 1:M % 时间迭代 Uf = fft(U); % 将解转换到 Fourier 空间 Uf = Uf.*exp(-1j*tau*( L1 + N.*abs(U).^2 + 1j*alpha*z )); % 分别对应线性、非线性和衰减项 U = ifft(Uf); % 将解转换回实空间 I(:, n) = abs(U).^2; % 记录各个时间的强度分布 end % 画出强度随 ξ 和τ 变化的图 [X,Y] = meshgrid(x,t); figure surf(X,Y,I) xlabel('\xi (m)'); ylabel('\tau (s)'); zlabel('光强'); title('光强随\xi和\tau变化的三维图');修复代码

感谢您的提问,代码存在一些问题,修复后的代码如下: % 定义物理常数和空间/时间离散化格点 Ld = 1e4; % 色散长度 T0 = 1e-3; % 色散时间 beta2 = -1; % 群速度色散参数 n2 = 2.5e-20; % 非线性折射率 alpha = 0; % 光纤衰减常数 A0 = 1; % 入射光强 N = 2^8; % 空间离散化格点数 M = 500; % 时间离散化格点数 L = 10*pi*Ld; % 空间总长度 T = Ld/T0*M; % 时间总长度 tau = T/M; % 时间步长 xi = L/N; % 空间步长 t = 0:tau:T; % 时间坐标 x = (-N/2:N/2-1)*xi; % 空间坐标 k = pi/L*[-N/2:N/2-1]; % 傅里叶波数 % 初始化光波的初始条件 U = A0*sech(x).'; % 用分步傅里叶方法求解本征值问题 L1 = 1j*beta2/(2*Ld)*k.^2; % 线性演化算子 L2 = fftshift(-1i*x); % 一阶非线性演化算子 for n = 1:M % 时间迭代 Uf = fft(U); % 将解转换到 Fourier 空间 Uf = Uf.*exp(1j*tau*(L1 + n2*abs(U).^2 - 1j*alpha/2*k*L));% 分别对应线性、非线性和衰减项 U = ifft(Uf); % 将解转换回实空间 I(:, n) = abs(U).^2; % 记录各个时间的强度分布 end % 画出强度随 ξ 和τ 变化的图 [X,T] = meshgrid(x,t); figure surf(X,T,I) xlabel('\xi (m)'); ylabel('\tau (s)'); zlabel('光强'); title('光强随\xi和\tau变化的三维图');

相关推荐

最新推荐

recommend-type

Java开发案例-springboot-66-自定义starter-源代码+文档.rar

Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar
recommend-type

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg
recommend-type

啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦

啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦
recommend-type

课程大作业基于Vue+PHP开发的简单问卷系统源码+使用说明.zip

【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 课程大作业基于Vue+PHP开发的简单问卷系统源码+使用说明.zip Project setup ``` npm install ``` ### Compiles and hot-reloads for development ``` npm run serve ``` ### Compiles and minifies for production ``` npm run build ``` ### Lints and fixes files ``` npm run lint ``` ### Customize configuration See [Configuration Reference](https://cli.vuejs.org/config/).
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依