基于docker容器,快速搭建hadoop+spark+hive+hbase集群的详细过程记录

时间: 2023-05-31 08:18:53 浏览: 245
### 回答1: 很抱歉,我是一名语言模型AI,无法亲自进行实际操作。但是,我可以提供一些基于Docker容器快速搭建Hadoop+Spark+Hive+HBase集群的详细过程记录的参考资料,供您参考。 1. 准备工作 首先,需要安装Docker和Docker Compose。可以参考官方文档进行安装。 2. 下载镜像 可以从Docker Hub上下载Hadoop、Spark、Hive和HBase的镜像。可以使用以下命令: ``` docker pull bde2020/hadoop-base:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hadoop-namenode:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hadoop-resourcemanager:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hadoop-nodemanager:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hadoop-historyserver:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hive:2.3.7-postgresql-metastore docker pull bde2020/spark-base:2.4.5-hadoop2.7 docker pull bde2020/spark-master:2.4.5-hadoop2.7 docker pull bde2020/spark-worker:2.4.5-hadoop2.7 docker pull bde2020/hbase:2.2.4-hadoop3.2.1-java8 ``` 3. 编写docker-compose.yml文件 可以编写一个docker-compose.yml文件来定义Hadoop、Spark、Hive和HBase的容器。以下是一个示例: ``` version: '3' services: namenode: image: bde2020/hadoop-namenode:2.0.0-hadoop3.2.1-java8 container_name: namenode ports: - "9870:9870" volumes: - ./hadoop-data/namenode:/hadoop/dfs/name environment: - CLUSTER_NAME=hadoop-cluster datanode: image: bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8 container_name: datanode volumes: - ./hadoop-data/datanode:/hadoop/dfs/data environment: - CLUSTER_NAME=hadoop-cluster - CORE_CONF_fs_defaultFS=hdfs://namenode:8020 resourcemanager: image: bde2020/hadoop-resourcemanager:2.0.0-hadoop3.2.1-java8 container_name: resourcemanager ports: - "8088:8088" environment: - CLUSTER_NAME=hadoop-cluster - CORE_CONF_fs_defaultFS=hdfs://namenode:8020 - YARN_CONF_yarn_resourcemanager_hostname=resourcemanager nodemanager: image: bde2020/hadoop-nodemanager:2.0.0-hadoop3.2.1-java8 container_name: nodemanager environment: - CLUSTER_NAME=hadoop-cluster - CORE_CONF_fs_defaultFS=hdfs://namenode:8020 - YARN_CONF_yarn_resourcemanager_hostname=resourcemanager historyserver: image: bde2020/hadoop-historyserver:2.0.0-hadoop3.2.1-java8 container_name: historyserver ports: - "8188:8188" environment: - CLUSTER_NAME=hadoop-cluster - CORE_CONF_fs_defaultFS=hdfs://namenode:8020 - YARN_CONF_yarn_resourcemanager_hostname=resourcemanager hive-metastore-postgresql: image: bde2020/hive:2.3.7-postgresql-metastore container_name: hive-metastore-postgresql ports: - "5432:5432" environment: - POSTGRES_PASSWORD=hivepassword - POSTGRES_USER=hiveuser - POSTGRES_DB=hivemetastore spark-master: image: bde2020/spark-master:2.4.5-hadoop2.7 container_name: spark-master ports: - "8080:8080" environment: - SPARK_CONF_spark_master_host=spark-master - SPARK_CONF_spark_eventLog_enabled=true - SPARK_CONF_spark_eventLog_dir=/tmp/spark-events - SPARK_CONF_spark_history_fs_logDirectory=hdfs://namenode:8020/spark-logs - SPARK_CONF_spark_history_ui_port=18080 spark-worker-1: image: bde2020/spark-worker:2.4.5-hadoop2.7 container_name: spark-worker-1 environment: - SPARK_CONF_spark_master_url=spark://spark-master:7077 - SPARK_CONF_spark_worker_cores=2 - SPARK_CONF_spark_worker_memory=2g spark-worker-2: image: bde2020/spark-worker:2.4.5-hadoop2.7 container_name: spark-worker-2 environment: - SPARK_CONF_spark_master_url=spark://spark-master:7077 - SPARK_CONF_spark_worker_cores=2 - SPARK_CONF_spark_worker_memory=2g hbase-master: image: bde2020/hbase:2.2.4-hadoop3.2.1-java8 container_name: hbase-master ports: - "16010:16010" environment: - HBASE_CONF_hbase_regionserver_hostname=hbase-master - HBASE_CONF_hbase_master_hostname=hbase-master hbase-regionserver: image: bde2020/hbase:2.2.4-hadoop3.2.1-java8 container_name: hbase-regionserver environment: - HBASE_CONF_hbase_regionserver_hostname=hbase-regionserver - HBASE_CONF_hbase_master_hostname=hbase-master ``` 4. 启动容器 可以使用以下命令启动容器: ``` docker-compose up -d ``` 5. 验证集群 可以使用以下命令验证集群: ``` docker exec -it namenode bash hdfs dfs -mkdir /test hdfs dfs -ls / exit ``` ``` docker exec -it spark-master bash spark-submit --class org.apache.spark.examples.SparkPi --master spark://spark-master:7077 /opt/spark/examples/jars/spark-examples_2.11-2.4.5.jar 10 exit ``` ``` docker exec -it hive-metastore-postgresql bash psql -h localhost -U hiveuser -d hivemetastore \dt \q exit ``` ``` docker exec -it hbase-master bash hbase shell create 'test', 'cf' list exit ``` 以上是一个基于Docker容器快速搭建Hadoop+Spark+Hive+HBase集群的详细过程记录。希望对您有所帮助。 ### 回答2: Docker是一种轻量级的虚拟化技术,可以在同一操作系统中运行多个独立的容器,各个容器之间相互隔离。通过Docker容器,快速搭建Hadoop、Spark、Hive和Hbase集群成为了可能。下面是基于Docker容器,快速搭建Hadoop、Spark、Hive和Hbase集群的详细过程记录: 1. 下载Docker技术栈 在运行Docker之前,我们需要先安装Docker和Docker Compose。我们可以从官方Docker网站下载Docker和Docker Compose: - Docker的下载链接:https://www.docker.com/get-started - Docker Compose的下载链接:https://docs.docker.com/compose/install/ 2. 创建docker-compose.yml文件 在运行Docker之前,我们需要创建一个docker-compose.yml文件,该文件定义了Docker容器的配置和组合。我们将以下容器定义在该文件中: - Hadoop NameNode - Hadoop DataNode - Hadoop ResourceManager - Hadoop NodeManager - Spark Master - Spark Worker - Hive Server - HBase Master 我们可以通过以下命令创建docker-compose.yml文件: ``` version: "2.2" services: namenode: container_name: namenode image: cloudera/quickstart:latest hostname: namenode ports: - "8020:8020" - "50070:50070" - "50075:50075" - "50010:50010" - "50020:50020" volumes: - ~/hadoop-data/namenode:/var/lib/hadoop-hdfs/cache/hdfs/dfs/name environment: SERVICE_PRECONDITION: HDFS_NAMENODE datanode: container_name: datanode image: cloudera/quickstart:latest hostname: datanode ports: - "50075:50075" - "50010:50010" - "50020:50020" volumes: - ~/hadoop-data/datanode:/var/lib/hadoop-hdfs/cache/hdfs/dfs/data environment: SERVICE_PRECONDITION: HDFS_DATANODE resourcemanager: container_name: resourcemanager image: cloudera/quickstart:latest hostname: resourcemanager ports: - "8088:8088" - "8030:8030" - "8031:8031" - "8032:8032" - "8033:8033" environment: SERVICE_PRECONDITION: YARN_RESOURCEMANAGER nodemanager: container_name: nodemanager image: cloudera/quickstart:latest hostname: nodemanager environment: SERVICE_PRECONDITION: YARN_NODEMANAGER sparkmaster: container_name: sparkmaster image: sequenceiq/spark:2.1.0 hostname: sparkmaster ports: - "8081:8081" command: bash -c "/usr/local/spark/sbin/start-master.sh && tail -f /dev/null" sparkworker: container_name: sparkworker image: sequenceiq/spark:2.1.0 hostname: sparkworker environment: SPARK_MASTER_HOST: sparkmaster command: bash -c "/usr/local/spark/sbin/start-worker.sh spark://sparkmaster:7077 && tail -f /dev/null" hiveserver: container_name: hiveserver image: bde2020/hive:2.3.4-postgresql-metastore hostname: hiveserver ports: - "10000:10000" environment: METASTORE_HOST: postgres META_PORT: 5432 MYSQL_DATABASE: hive MYSQL_USER: hive MYSQL_PASSWORD: hive POSTGRES_DB: hive POSTGRES_USER: hive POSTGRES_PASSWORD: hive hbasemaster: container_name: hbasemaster image: harisekhon/hbase hostname: hbasemaster ports: - "16010:16010" - "2181:2181" command: ["bin/start-hbase.sh"] ``` 3. 运行Docker容器 运行Docker容器的第一步是将docker-compose.yml文件放置在合适的路径下。在运行Docker容器之前,我们需要从Docker Hub拉取镜像,并运行以下命令: ``` $ docker-compose up -d ``` 该命令会运行所有定义在docker-compose.yml文件中的容器。 4. 配置集群 在运行Docker之后,我们需要进入相应的容器,例如进入namenode容器: ``` $ docker exec -it namenode bash ``` 我们可以使用以下命令检查Hadoop、Spark、Hive和HBase集群是否正确配置: - Hadoop集群检查: ``` $ hadoop fs -put /usr/lib/hadoop/README.txt / $ hadoop fs -ls / ``` - Spark集群检查: ``` $ spark-shell --master spark://sparkmaster:7077 ``` - Hive集群检查: ``` $ beeline -u jdbc:hive2://localhost:10000 ``` - HBase集群检查: ``` $ hbase shell ``` 5. 关闭Docker容器 在测试完成后,我们可以使用以下命令关闭所有Docker容器: ``` $ docker-compose down --volumes ``` 综上所述,Docker容器是快速搭建Hadoop、Spark、Hive和HBase集群的理想选择。通过docker-compose.yml文件,我们可以轻松配置和管理整个集群。使用这种方法,可以节省大量的时间和精力,并使整个搭建过程更加方便和高效。 ### 回答3: Docker容器是一种轻型的虚拟化技术,能够快速搭建大型分布式系统集群。可以使用Docker容器快速搭建Hadoop,Spark,Hive和HBase集群。下面是基于Docker容器搭建大数据集群的详细过程记录: 1.安装Docker和Docker-Compose 首先需要安装Docker和Docker-Compose。可以按照官方文档详细教程进行安装。 2.创建Docker文件 创建一个Dockerfile文件用于构建Hadoop,Spark,Hive和HBase的镜像。在该文件内添加以下内容: FROM ubuntu:16.04 RUN apt-get update # Install JDK, Python, and other dependencies RUN apt-get install -y openjdk-8-jdk python python-dev libffi-dev libssl-dev libxml2-dev libxslt-dev # Install Hadoop RUN wget http://www.eu.apache.org/dist/hadoop/common/hadoop-2.7.7/hadoop-2.7.7.tar.gz RUN tar -xzvf hadoop-2.7.7.tar.gz RUN mv hadoop-2.7.7 /opt/hadoop # Install Spark RUN wget http://www.eu.apache.org/dist/spark/spark-2.4.0/spark-2.4.0-bin-hadoop2.7.tgz RUN tar -zxvf spark-2.4.0-bin-hadoop2.7.tgz RUN mv spark-2.4.0-bin-hadoop2.7 /opt/spark # Install Hive RUN wget http://www.eu.apache.org/dist/hive/hive-2.3.4/apache-hive-2.3.4-bin.tar.gz RUN tar -zxvf apache-hive-2.3.4-bin.tar.gz RUN mv apache-hive-2.3.4-bin /opt/hive # Install HBase RUN wget http://www.eu.apache.org/dist/hbase/hbase-1.4.9/hbase-1.4.9-bin.tar.gz RUN tar -zxvf hbase-1.4.9-bin.tar.gz RUN mv hbase-1.4.9 /opt/hbase # Set Environment Variables ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64 ENV HADOOP_HOME /opt/hadoop ENV SPARK_HOME /opt/spark ENV HIVE_HOME /opt/hive ENV HBASE_HOME /opt/hbase ENV PATH $PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$SPARK_HOME/bin:$HIVE_HOME/bin:$HBASE_HOME/bin # Format HDFS RUN $HADOOP_HOME/bin/hdfs namenode -format 3.创建Docker-Compose文件 创建一个docker-compose文件,里面有一个master节点和两个worker节点。在docker-compose文件中添加以下内容: version: "3" services: master: image: hadoop-spark-hive-hbase container_name: master hostname: master ports: - "22" - "8088:8088" - "8030:8030" - "8031:8031" - "8032:8032" - "9000:9000" - "10020:10020" - "19888:19888" - "50010:50010" - "50020:50020" - "50070:50070" - "50075:50075" volumes: - /data:/data command: - /usr/sbin/sshd - -D worker1: image: hadoop-spark-hive-hbase container_name: worker1 hostname: worker1 ports: - "22" - "50010" - "50020" - "50075" volumes: - /data:/data command: - /usr/sbin/sshd - -D worker2: image: hadoop-spark-hive-hbase container_name: worker2 hostname: worker2 ports: - "22" - "50010" - "50020" - "50075" volumes: - /data:/data command: - /usr/sbin/sshd - -D 4.构建镜像 运行以下命令来构建镜像: docker build -t hadoop-spark-hive-hbase . 5.启动容器 运行以下命令来启动容器: docker-compose up -d 6.测试集群 在浏览器中输入http://IP地址:8088,可以看到Hadoop和YARN的Web控制台。 在浏览器中输入http://IP地址:50070,可以看到HDFS的Web控制台。 在浏览器中输入http://IP地址:8888,可以看到Jupyter Notebook。 在Jupyter Notebook中,创建一个Python文件并运行以下代码来测试Spark集群: from pyspark import SparkContext sc = SparkContext() rdd1 = sc.parallelize(range(1000)) rdd2 = sc.parallelize(range(1000, 2000)) rdd3 = rdd1.union(rdd2) rdd3.take(10) 以上就是基于Docker容器快速搭建Hadoop,Spark,Hive和HBase集群的详细过程记录。

相关推荐

最新推荐

recommend-type

win10下搭建Hadoop环境(jdk+mysql+hadoop+scala+hive+spark) 3.docx

在Windows 10环境下搭建Hadoop生态系统,包括JDK、MySQL、Hadoop、Scala、Hive和Spark等组件,是一项繁琐但重要的任务,这将为你提供一个基础的大数据处理平台。下面将详细介绍每个组件的安装与配置过程。 **1. JDK...
recommend-type

Docker+Jenkins+GitLab+Maven+Harbor+SpringBoot自动化构建

1. Docker+Jenkins+GitLab+Maven+Harbor+SpringBoot自动化构建+Jenkins自动化部署配置 2.无须运维部署 ,而是相关的开发人员,测试人员登录jenkins传入需要部署的tag即可,整个部署过程无须运维参与,解放运维劳动力
recommend-type

Linux+Docker+SpringBoot+IDEA一键自动化部署的详细步骤

主要介绍了Linux+Docker+SpringBoot+IDEA一键自动化部署的详细步骤,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

基于Jenkins+Gitlab+Docker实现SpringBoot项目自动部署

基于Jenkins+Gitlab+Docker实现SpringBoot项目自动部署 本文主要介绍了基于Jenkins、Gitlab和Docker实现SpringBoot项目自动部署的方法。下面将从Jenkins的安装、配置到自动化构建和部署的整个过程进行详细说明。 ...
recommend-type

Docker 搭建集群MongoDB的实现步骤

本文将详细讲解如何使用Docker来搭建一个包含主节点、副节点和仲裁节点的MongoDB集群。 首先,我们需要了解MongoDB集群的基本概念: 1. **副本集(Replica Set)**:由一个主节点(Primary)、多个副节点...
recommend-type

图书大厦会员卡管理系统:功能设计与实现

本资源是一份C语言实训题目,目标是设计一个图书大厦的会员卡管理程序,旨在实现会员卡的全流程管理。以下是详细的知识点: 1. **会员卡管理**: - 该程序的核心功能围绕会员卡进行,包括新会员的注册(录入姓名、身份证号、联系方式并分配卡号),以及会员信息的维护(修改、续费、消费结算、退卡、挂失)。 - **功能细节**: - **新会员登记**:收集并存储个人基本信息,如姓名、身份证号和联系方式。 - **信息修改**:允许管理员更新会员的个人信息。 - **会员续费**:通过卡号查询信息并计算折扣,成功续费后更新数据。 - **消费结算**:根据卡号查询消费记录,满1000元自动升级为VIP,并提供9折优惠。 - **退卡和挂失**:退卡时退还余额,删除会员信息;挂失则转移余额至新卡,原卡显示挂失状态。 - **统计功能**:按缴费总额和消费总额排序,显示所有会员的详细信息。 2. **软件开发过程**: - 遵循软件工程标准,需按照分析、设计、编码、调试和测试的步骤来开发程序。 - **菜单设计**:程序以菜单形式呈现,用户通过菜单选择操作项目,如选择录入、查询、挂失等。 3. **输入输出要求**: - 用户通过键盘输入数据,程序会提供清晰的提示信息,包括数据内容、格式和结束方式。 - 菜单界面清晰,包含各项功能选项,如“添加会员”、“查询信息”、“挂失处理”等。 4. **数据结构与函数设计**: - 使用`struct huiyuan`定义会员信息结构体,包含卡号、姓名、身份证号和电话号码字段。 - 设计`menu()`函数负责显示菜单,通过函数调用来执行不同操作的功能函数。 5. **优惠策略**: - 购书打折规则:满1000元享受95折,满2000元享受9折,满5000元享受8折。 通过这个C语言项目,学生将学习到如何运用结构体、函数、文件I/O以及用户交互等核心概念,实现一个实用的会员卡管理系统。同时,也将提升他们的编程逻辑思维、问题解决能力和项目管理能力。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Spring Boot框架测试实践:单元测试、集成测试、端到端测试(确保代码质量与稳定性)

![Spring Boot框架测试实践:单元测试、集成测试、端到端测试(确保代码质量与稳定性)](https://img-blog.csdnimg.cn/direct/70e2d215a77445048e72c56ddce5fa95.png) # 1. Spring Boot测试概述 Spring Boot测试是用于测试Spring Boot应用程序的全面测试框架。它提供了一套丰富的功能,使开发人员能够编写各种类型的测试,从单元测试到端到端测试。Spring Boot测试框架基于JUnit和Mockito等流行的测试库,并与Spring Boot应用程序的特性和功能进行了无缝集成。 通过使
recommend-type

转换json的方法是json.tojsonString

"toJsonString"并不是JSON本身的标准方法,它通常是在某些编程语言如Java中,使用特定库(如Jackson、Gson等)将JSON对象或结构转换成JSON字符串的函数。例如,在Java中,如果你有一个`ObjectMapper`实例,你可以这样做: ```java import com.fasterxml.jackson.databind.ObjectMapper; // 假设你有一个Pojo对象 MyClass obj = new MyClass(); ObjectMapper mapper = new ObjectMapper(); String jsonString
recommend-type

JAVA经典算法实战:月兔繁殖与素数判定

在Java编程中,经典算法题目的学习对于提升程序员的逻辑思维和解决问题的能力具有重要意义。以下是从提供的三个Java程序片段中提炼出的关键知识点: 1. 斐波那契数列问题: 题目涉及的是著名的斐波那契数列,它是一个经典的动态规划问题,特点是每一项都是前两项之和。第一个程序展示了如何使用递归方法实现,通过`exp2`类中的`f()`函数计算给定月份数的兔子总数。这里用到了递归公式 `f(x) = f(x-1) + f(x-2)`,该公式对应于序列1, 1, 2, 3, 5, 8, 13, 21...。递归函数设计巧妙地利用了自身调用,减少了重复计算。 2. 素数判断: 第二个程序涉及到判断101-200范围内的素数。素数是只有两个正因数(1和本身)的大于1的自然数。`math`类中的`iszhishu()`函数用于检测一个数是否为素数,它通过检查2到该数平方根之间的整数能否整除该数来判断。这是一种常见的素数检验方法,称为试除法。当找到能整除的因子时,返回`false`,否则如果循环结束都没有找到因子,返回`true`,表示该数是素数。 3. 水仙花数: 第三个程序提到的“水仙花数”是指那些每一位数字的立方和等于其本身的三位数,如153(1^3 + 5^3 + 3^3 = 153)。这里的算法没有直接给出,但提示了寻找这类数的思路,可能是遍历一定范围内的三位数,然后计算各位数字的立方和进行比较。这个题目考察了基本的数学概念和数据结构的使用,比如可能需要用到列表或者集合来存储和验证水仙花数。 这些Java代码示例涵盖了递归、动态规划(如斐波那契数列)、基本的数学逻辑(素数判定)以及简单的数据处理(如查找特定类型的数)。学习这些算法不仅可以提升编程技能,还能培养解决问题的策略,为后续的复杂编程挑战打下坚实的基础。同时,通过实际操作这些代码,程序员可以加深对Java语言特性和控制结构的理解。