基于docker容器,快速搭建hadoop+spark+hive+hbase集群的详细过程记录
回答1:
很抱歉,我是一名语言模型AI,无法亲自进行实际操作。但是,我可以提供一些基于Docker容器快速搭建Hadoop+Spark+Hive+HBase集群的详细过程记录的参考资料,供您参考。
- 准备工作
首先,需要安装Docker和Docker Compose。可以参考官方文档进行安装。
- 下载镜像
可以从Docker Hub上下载Hadoop、Spark、Hive和HBase的镜像。可以使用以下命令:
docker pull bde2020/hadoop-base:2.0.0-hadoop3.2.1-java8
docker pull bde2020/hadoop-namenode:2.0.0-hadoop3.2.1-java8
docker pull bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8
docker pull bde2020/hadoop-resourcemanager:2.0.0-hadoop3.2.1-java8
docker pull bde2020/hadoop-nodemanager:2.0.0-hadoop3.2.1-java8
docker pull bde2020/hadoop-historyserver:2.0.0-hadoop3.2.1-java8
docker pull bde2020/hive:2.3.7-postgresql-metastore
docker pull bde2020/spark-base:2.4.5-hadoop2.7
docker pull bde2020/spark-master:2.4.5-hadoop2.7
docker pull bde2020/spark-worker:2.4.5-hadoop2.7
docker pull bde2020/hbase:2.2.4-hadoop3.2.1-java8
- 编写docker-compose.yml文件
可以编写一个docker-compose.yml文件来定义Hadoop、Spark、Hive和HBase的容器。以下是一个示例:
version: '3'
services:
namenode:
image: bde2020/hadoop-namenode:2.0.0-hadoop3.2.1-java8
container_name: namenode
ports:
- "9870:9870"
volumes:
- ./hadoop-data/namenode:/hadoop/dfs/name
environment:
- CLUSTER_NAME=hadoop-cluster
datanode:
image: bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8
container_name: datanode
volumes:
- ./hadoop-data/datanode:/hadoop/dfs/data
environment:
- CLUSTER_NAME=hadoop-cluster
- CORE_CONF_fs_defaultFS=hdfs://namenode:8020
resourcemanager:
image: bde2020/hadoop-resourcemanager:2.0.0-hadoop3.2.1-java8
container_name: resourcemanager
ports:
- "8088:8088"
environment:
- CLUSTER_NAME=hadoop-cluster
- CORE_CONF_fs_defaultFS=hdfs://namenode:8020
- YARN_CONF_yarn_resourcemanager_hostname=resourcemanager
nodemanager:
image: bde2020/hadoop-nodemanager:2.0.0-hadoop3.2.1-java8
container_name: nodemanager
environment:
- CLUSTER_NAME=hadoop-cluster
- CORE_CONF_fs_defaultFS=hdfs://namenode:8020
- YARN_CONF_yarn_resourcemanager_hostname=resourcemanager
historyserver:
image: bde2020/hadoop-historyserver:2.0.0-hadoop3.2.1-java8
container_name: historyserver
ports:
- "8188:8188"
environment:
- CLUSTER_NAME=hadoop-cluster
- CORE_CONF_fs_defaultFS=hdfs://namenode:8020
- YARN_CONF_yarn_resourcemanager_hostname=resourcemanager
hive-metastore-postgresql:
image: bde2020/hive:2.3.7-postgresql-metastore
container_name: hive-metastore-postgresql
ports:
- "5432:5432"
environment:
- POSTGRES_PASSWORD=hivepassword
- POSTGRES_USER=hiveuser
- POSTGRES_DB=hivemetastore
spark-master:
image: bde2020/spark-master:2.4.5-hadoop2.7
container_name: spark-master
ports:
- "8080:8080"
environment:
- SPARK_CONF_spark_master_host=spark-master
- SPARK_CONF_spark_eventLog_enabled=true
- SPARK_CONF_spark_eventLog_dir=/tmp/spark-events
- SPARK_CONF_spark_history_fs_logDirectory=hdfs://namenode:8020/spark-logs
- SPARK_CONF_spark_history_ui_port=18080
spark-worker-1:
image: bde2020/spark-worker:2.4.5-hadoop2.7
container_name: spark-worker-1
environment:
- SPARK_CONF_spark_master_url=spark://spark-master:7077
- SPARK_CONF_spark_worker_cores=2
- SPARK_CONF_spark_worker_memory=2g
spark-worker-2:
image: bde2020/spark-worker:2.4.5-hadoop2.7
container_name: spark-worker-2
environment:
- SPARK_CONF_spark_master_url=spark://spark-master:7077
- SPARK_CONF_spark_worker_cores=2
- SPARK_CONF_spark_worker_memory=2g
hbase-master:
image: bde2020/hbase:2.2.4-hadoop3.2.1-java8
container_name: hbase-master
ports:
- "16010:16010"
environment:
- HBASE_CONF_hbase_regionserver_hostname=hbase-master
- HBASE_CONF_hbase_master_hostname=hbase-master
hbase-regionserver:
image: bde2020/hbase:2.2.4-hadoop3.2.1-java8
container_name: hbase-regionserver
environment:
- HBASE_CONF_hbase_regionserver_hostname=hbase-regionserver
- HBASE_CONF_hbase_master_hostname=hbase-master
- 启动容器
可以使用以下命令启动容器:
docker-compose up -d
- 验证集群
可以使用以下命令验证集群:
docker exec -it namenode bash
hdfs dfs -mkdir /test
hdfs dfs -ls /
exit
docker exec -it spark-master bash
spark-submit --class org.apache.spark.examples.SparkPi --master spark://spark-master:7077 /opt/spark/examples/jars/spark-examples_2.11-2.4.5.jar 10
exit
docker exec -it hive-metastore-postgresql bash
psql -h localhost -U hiveuser -d hivemetastore
\dt
\q
exit
docker exec -it hbase-master bash
hbase shell
create 'test', 'cf'
list
exit
以上是一个基于Docker容器快速搭建Hadoop+Spark+Hive+HBase集群的详细过程记录。希望对您有所帮助。
回答2:
Docker是一种轻量级的虚拟化技术,可以在同一操作系统中运行多个独立的容器,各个容器之间相互隔离。通过Docker容器,快速搭建Hadoop、Spark、Hive和Hbase集群成为了可能。下面是基于Docker容器,快速搭建Hadoop、Spark、Hive和Hbase集群的详细过程记录:
- 下载Docker技术栈
在运行Docker之前,我们需要先安装Docker和Docker Compose。我们可以从官方Docker网站下载Docker和Docker Compose:
- Docker的下载链接:https://www.docker.com/get-started
- Docker Compose的下载链接:https://docs.docker.com/compose/install/
- 创建docker-compose.yml文件
在运行Docker之前,我们需要创建一个docker-compose.yml文件,该文件定义了Docker容器的配置和组合。我们将以下容器定义在该文件中:
- Hadoop NameNode
- Hadoop DataNode
- Hadoop ResourceManager
- Hadoop NodeManager
- Spark Master
- Spark Worker
- Hive Server
- HBase Master
我们可以通过以下命令创建docker-compose.yml文件:
version: "2.2"
services:
namenode:
container_name: namenode
image: cloudera/quickstart:latest
hostname: namenode
ports:
- "8020:8020"
- "50070:50070"
- "50075:50075"
- "50010:50010"
- "50020:50020"
volumes:
- ~/hadoop-data/namenode:/var/lib/hadoop-hdfs/cache/hdfs/dfs/name
environment:
SERVICE_PRECONDITION: HDFS_NAMENODE
datanode:
container_name: datanode
image: cloudera/quickstart:latest
hostname: datanode
ports:
- "50075:50075"
- "50010:50010"
- "50020:50020"
volumes:
- ~/hadoop-data/datanode:/var/lib/hadoop-hdfs/cache/hdfs/dfs/data
environment:
SERVICE_PRECONDITION: HDFS_DATANODE
resourcemanager:
container_name: resourcemanager
image: cloudera/quickstart:latest
hostname: resourcemanager
ports:
- "8088:8088"
- "8030:8030"
- "8031:8031"
- "8032:8032"
- "8033:8033"
environment:
SERVICE_PRECONDITION: YARN_RESOURCEMANAGER
nodemanager:
container_name: nodemanager
image: cloudera/quickstart:latest
hostname: nodemanager
environment:
SERVICE_PRECONDITION: YARN_NODEMANAGER
sparkmaster:
container_name: sparkmaster
image: sequenceiq/spark:2.1.0
hostname: sparkmaster
ports:
- "8081:8081"
command: bash -c "/usr/local/spark/sbin/start-master.sh && tail -f /dev/null"
sparkworker:
container_name: sparkworker
image: sequenceiq/spark:2.1.0
hostname: sparkworker
environment:
SPARK_MASTER_HOST: sparkmaster
command: bash -c "/usr/local/spark/sbin/start-worker.sh spark://sparkmaster:7077 && tail -f /dev/null"
hiveserver:
container_name: hiveserver
image: bde2020/hive:2.3.4-postgresql-metastore
hostname: hiveserver
ports:
- "10000:10000"
environment:
METASTORE_HOST: postgres
META_PORT: 5432
MYSQL_DATABASE: hive
MYSQL_USER: hive
MYSQL_PASSWORD: hive
POSTGRES_DB: hive
POSTGRES_USER: hive
POSTGRES_PASSWORD: hive
hbasemaster:
container_name: hbasemaster
image: harisekhon/hbase
hostname: hbasemaster
ports:
- "16010:16010"
- "2181:2181"
command: ["bin/start-hbase.sh"]
- 运行Docker容器
运行Docker容器的第一步是将docker-compose.yml文件放置在合适的路径下。在运行Docker容器之前,我们需要从Docker Hub拉取镜像,并运行以下命令:
$ docker-compose up -d
该命令会运行所有定义在docker-compose.yml文件中的容器。
- 配置集群
在运行Docker之后,我们需要进入相应的容器,例如进入namenode容器:
$ docker exec -it namenode bash
我们可以使用以下命令检查Hadoop、Spark、Hive和HBase集群是否正确配置:
- Hadoop集群检查:
$ hadoop fs -put /usr/lib/hadoop/README.txt /
$ hadoop fs -ls /
- Spark集群检查:
$ spark-shell --master spark://sparkmaster:7077
- Hive集群检查:
$ beeline -u jdbc:hive2://localhost:10000
- HBase集群检查:
$ hbase shell
- 关闭Docker容器
在测试完成后,我们可以使用以下命令关闭所有Docker容器:
$ docker-compose down --volumes
综上所述,Docker容器是快速搭建Hadoop、Spark、Hive和HBase集群的理想选择。通过docker-compose.yml文件,我们可以轻松配置和管理整个集群。使用这种方法,可以节省大量的时间和精力,并使整个搭建过程更加方便和高效。
回答3:
Docker容器是一种轻型的虚拟化技术,能够快速搭建大型分布式系统集群。可以使用Docker容器快速搭建Hadoop,Spark,Hive和HBase集群。下面是基于Docker容器搭建大数据集群的详细过程记录:
1.安装Docker和Docker-Compose 首先需要安装Docker和Docker-Compose。可以按照官方文档详细教程进行安装。
2.创建Docker文件 创建一个Dockerfile文件用于构建Hadoop,Spark,Hive和HBase的镜像。在该文件内添加以下内容:
FROM ubuntu:16.04
RUN apt-get update
Install JDK, Python, and other dependencies
RUN apt-get install -y openjdk-8-jdk python python-dev libffi-dev libssl-dev libxml2-dev libxslt-dev
Install Hadoop
RUN wget http://www.eu.apache.org/dist/hadoop/common/hadoop-2.7.7/hadoop-2.7.7.tar.gz RUN tar -xzvf hadoop-2.7.7.tar.gz RUN mv hadoop-2.7.7 /opt/hadoop
Install Spark
RUN wget http://www.eu.apache.org/dist/spark/spark-2.4.0/spark-2.4.0-bin-hadoop2.7.tgz RUN tar -zxvf spark-2.4.0-bin-hadoop2.7.tgz RUN mv spark-2.4.0-bin-hadoop2.7 /opt/spark
Install Hive
RUN wget http://www.eu.apache.org/dist/hive/hive-2.3.4/apache-hive-2.3.4-bin.tar.gz RUN tar -zxvf apache-hive-2.3.4-bin.tar.gz RUN mv apache-hive-2.3.4-bin /opt/hive
Install HBase
RUN wget http://www.eu.apache.org/dist/hbase/hbase-1.4.9/hbase-1.4.9-bin.tar.gz RUN tar -zxvf hbase-1.4.9-bin.tar.gz RUN mv hbase-1.4.9 /opt/hbase
Set Environment Variables
ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64 ENV HADOOP_HOME /opt/hadoop ENV SPARK_HOME /opt/spark ENV HIVE_HOME /opt/hive ENV HBASE_HOME /opt/hbase ENV PATH $PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$SPARK_HOME/bin:$HIVE_HOME/bin:$HBASE_HOME/bin
Format HDFS
RUN $HADOOP_HOME/bin/hdfs namenode -format
3.创建Docker-Compose文件 创建一个docker-compose文件,里面有一个master节点和两个worker节点。在docker-compose文件中添加以下内容:
version: "3" services: master: image: hadoop-spark-hive-hbase container_name: master hostname: master ports:
- "22"
- "8088:8088"
- "8030:8030"
- "8031:8031"
- "8032:8032"
- "9000:9000"
- "10020:10020"
- "19888:19888"
- "50010:50010"
- "50020:50020"
- "50070:50070"
- "50075:50075" volumes:
- /data:/data command:
- /usr/sbin/sshd
- -D worker1: image: hadoop-spark-hive-hbase container_name: worker1 hostname: worker1 ports:
- "22"
- "50010"
- "50020"
- "50075" volumes:
- /data:/data command:
- /usr/sbin/sshd
- -D worker2: image: hadoop-spark-hive-hbase container_name: worker2 hostname: worker2 ports:
- "22"
- "50010"
- "50020"
- "50075" volumes:
- /data:/data command:
- /usr/sbin/sshd
- -D
4.构建镜像 运行以下命令来构建镜像:
docker build -t hadoop-spark-hive-hbase .
5.启动容器 运行以下命令来启动容器:
docker-compose up -d
6.测试集群 在浏览器中输入http://IP地址:8088,可以看到Hadoop和YARN的Web控制台。
在浏览器中输入http://IP地址:50070,可以看到HDFS的Web控制台。
在浏览器中输入http://IP地址:8888,可以看到Jupyter Notebook。
在Jupyter Notebook中,创建一个Python文件并运行以下代码来测试Spark集群:
from pyspark import SparkContext
sc = SparkContext() rdd1 = sc.parallelize(range(1000)) rdd2 = sc.parallelize(range(1000, 2000)) rdd3 = rdd1.union(rdd2) rdd3.take(10)
以上就是基于Docker容器快速搭建Hadoop,Spark,Hive和HBase集群的详细过程记录。
相关推荐


















