np.expand_dims(np.array(targets), 1) / 256这段代码的作用
时间: 2023-12-02 11:02:56 浏览: 88
这段代码的作用是将输入的targets数组增加一个新的维度,并将其转换为numpy数组,然后对数组中的所有元素除以256。np.array(targets)将输入的targets转换为numpy数组,np.expand_dims(arr, axis)将数组arr在axis维度上扩展一维,本例中axis=1表示在第1个维度上扩展一维。最后除以256是为了将像素值的范围从0~255缩放到0~1之间。
相关问题
def read_data_bananas(is_train=True): """读取香蕉检测数据集中的图像和标签""" data_dir = d2l.download_extract('banana-detection') csv_fname = os.path.join(data_dir, 'bananas_train' if is_train else 'bananas_val', 'label.csv') csv_data = pd.read_csv(csv_fname) csv_data = csv_data.set_index('img_name') images, targets = [], [] for img_name, target in csv_data.iterrows(): images.append(image.imread( os.path.join(data_dir, 'bananas_train' if is_train else 'bananas_val', 'images', f'{img_name}'))) # 这里的target包含(类别,左上角x,左上角y,右下角x,右下角y), # 其中所有图像都具有相同的香蕉类(索引为0) targets.append(list(target)) return images, np.expand_dims(np.array(targets), 1) / 256
这段代码实现了读取香蕉检测数据集中的图像和标注信息的功能。具体来说,该函数首先通过 `d2l.download_extract()` 函数获取数据集的路径,然后根据 `is_train` 参数指示的训练集或验证集路径,读取对应的标注文件 `label.csv` 中的数据。接下来,将 `img_name` 列设置为数据框的行索引,方便后续的数据访问和操作。
然后,对于每张图像,使用 `matplotlib.image.imread()` 函数读取图像数据,并将其存储在 `images` 列表中。同时,将该图像的标注信息存储在 `targets` 列表中,该列表中的每个元素都是一个包含类别和检测框坐标的列表。需要注意的是,由于所有图像都具有相同的香蕉类,因此这个类别信息在代码中并没有被使用。
最后,将 `targets` 列表转换为 NumPy 数组,并将其归一化到 [0, 1] 的范围内,方便后续的模型训练。最终,该函数返回了读取到的图像数据和标注信息。
神经网络空间插值的代码
以下是神经网络空间插值的代码示例:
```python
import torch
from torchvision import models
from torch.autograd import Variable
from torch.nn import functional as F
import numpy as np
from PIL import Image
def load_image(filename, size=None, scale=None):
img = Image.open(filename)
if size is not None:
img = img.resize(size=size)
elif scale is not None:
img = img.resize(size=(int(img.size[0]/scale), int(img.size[1]/scale)))
return np.array(img)
def preprocess(image, size=None, scale=None):
image = Image.fromarray(np.uint8(image))
if size is not None:
image = image.resize(size)
elif scale is not None:
image = image.resize((int(image.size[0]/scale), int(image.size[1]/scale)))
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
image = np.array(image) / 255.0
image = (image - mean) / std
image = np.transpose(image, (2, 0, 1))
image = np.expand_dims(image, axis=0)
return torch.from_numpy(image).float()
def deprocess(image):
image = image.cpu().numpy()[0]
image = np.transpose(image, (1, 2, 0))
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
image = (image * std) + mean
image = np.clip(image, 0, 1)
image = (255 * image).astype(np.uint8)
return image
def get_features(image, model, layers=None):
if layers is None:
layers = {'0': 'conv1_1', '5': 'conv2_1', '10': 'conv3_1', '19': 'conv4_1', '21': 'conv4_2', '28': 'conv5_1'}
features = {}
x = image
for name, layer in enumerate(model.features):
x = layer(x)
if str(name) in layers:
features[layers[str(name)]] = x
return features
def gram_matrix(tensor):
b, c, h, w = tensor.size()
tensor = tensor.view(b * c, h * w)
gram = torch.mm(tensor, tensor.t())
return gram
class StyleTransfer():
def __init__(self, content_image, style_image, size=None, scale=None, alpha=1, beta=1000, num_epochs=300, device='cpu'):
self.device = device
self.alpha = alpha
self.beta = beta
self.num_epochs = num_epochs
self.content_image = preprocess(load_image(content_image), size=size, scale=scale).to(device)
self.style_image = preprocess(load_image(style_image), size=size, scale=scale).to(device)
self.model = models.vgg19(pretrained=True).features.to(device).eval()
self.content_targets = get_features(self.content_image, self.model)
self.style_targets = get_features(self.style_image, self.model)
self.optimizer = torch.optim.Adam([self.target], lr=0.01)
self.target = Variable(self.content_image.clone(), requires_grad=True).to(device)
def train(self):
for epoch in range(self.num_epochs):
self.optimizer.zero_grad()
target_features
阅读全文