用python写一个DQN代码,提供一个基础的框架就可以
时间: 2023-06-02 20:03:34 浏览: 319
好的,下面是一个基础的DQN代码框架,可以参考一下:
```python
import gym
import numpy as np
import tensorflow as tf
# 定义深度神经网络模型
class DQN(tf.keras.Model):
def __init__(self, num_actions):
super(DQN, self).__init__()
self.dense1 = tf.keras.layers.Dense(64, activation='relu')
self.dense2 = tf.keras.layers.Dense(64, activation='relu')
self.dense3 = tf.keras.layers.Dense(num_actions, activation=None)
def call(self, inputs):
x = self.dense1(inputs)
x = self.dense2(x)
x = self.dense3(x)
return x
# 定义经验回放缓存类
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
def push(self, state, action, reward, next_state, done):
if len(self.buffer) >= self.capacity:
self.buffer.pop(0)
self.buffer.append((state, action, reward, next_state, done))
def sample(self, batch_size):
batch = np.random.choice(len(self.buffer), batch_size, replace=False)
states, actions, rewards, next_states, dones = [], [], [], [], []
for i in batch:
state, action, reward, next_state, done = self.buffer[i]
states.append(state)
actions.append(action)
rewards.append(reward)
next_states.append(next_state)
dones.append(done)
return np.array(states), np.array(actions), np.array(rewards), np.array(next_states), np.array(dones)
# 定义DQN类
class DQNAgent:
def __init__(self, env):
self.env = env
self.replay_buffer = ReplayBuffer(capacity=10000)
self.model = DQN(num_actions=self.env.action_space.n)
self.target_model = DQN(num_actions=self.env.action_space.n)
self.target_model.set_weights(self.model.get_weights())
self.optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.batch_size = 32
self.steps = 0
self.update_freq = 1000
def act(self, state):
if np.random.rand() < self.epsilon:
return self.env.action_space.sample()
state = np.expand_dims(state, axis=0)
q_value = self.model.predict(state)
return np.argmax(q_value[0])
def train(self):
self.steps += 1
states, actions, rewards, next_states, dones = self.replay_buffer.sample(self.batch_size)
targets = self.model.predict_on_batch(states)
q_next = self.target_model.predict_on_batch(next_states)
targets[np.arange(self.batch_size), actions] = rewards + self.gamma * np.max(q_next, axis=1) * (1 - dones)
loss = self.model.train_on_batch(states, targets)
if self.steps % self.update_freq == 0:
self.target_model.set_weights(self.model.get_weights())
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
return loss
# 创建CartPole-v0环境实例
env = gym.make('CartPole-v0')
# 创建DQNAgent实例
agent = DQNAgent(env)
# 训练DQN网络
for episode in range(100):
state = env.reset()
episode_reward = 0
for step in range(200):
action = agent.act(state)
next_state, reward, done, info = env.step(action)
episode_reward += reward
agent.replay_buffer.push(state, action, reward, next_state, done)
loss = agent.train()
state = next_state
if done:
break
print('Episode: {}, Steps: {}, Epsilon: {:.4f}, Episode Reward: {:.4f}, Loss: {:.4f}'.format(
episode, step+1, agent.epsilon, episode_reward, loss))
```
上面的代码是使用TensorFlow 2.0实现的DQN算法,使用经验回放缓存来存储与批量采样过程。CartPole-v0游戏是OpenAI Gym中的一个非常简单的游戏,首先建议你先玩一下这个游戏,了解一下游戏规则和对象。你可以将这个代码作为代码框架,然后根据自己的需要进行修改,比如替换成其他的游戏环境,或者尝试更先进的深度强化学习算法,比如:DDQN、Dueling DQN或Rainbow等算法。
阅读全文