用Pytorch实现DQN的代码
时间: 2024-09-27 14:08:32 浏览: 40
在PyTorch中实现Deep Q-Network (DQN) 需要几个关键组件:神经网络模型、经验回放机制、目标网络和Q-learning更新步骤。这里是一个简单的DQN实现框架:
```python
import torch
import torch.nn as nn
from torch.optim import Adam
import random
class DQN(nn.Module):
def __init__(self, state_size, action_size):
super(DQN, self).__init__()
self.fc1 = nn.Linear(state_size, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, action_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
return self.fc3(x)
# 初始化DQN模型
model = DQN(state_size, action_size)
target_model = DQN(state_size, action_size) # 目标网络,定期复制当前模型参数
optimizer = Adam(model.parameters())
memory = [] # 回忆存储
def train_step(state, action, reward, next_state, done):
# 添加记忆到经验回放缓冲区
memory.append((state, action, reward, next_state, done))
if len(memory) > BATCH_SIZE: # 当缓存足够大时开始训练
experiences = random.sample(memory, BATCH_SIZE)
states, actions, rewards, next_states, dones = zip(*experiences)
# 计算Q值和下一个状态的Q值估计(使用目标网络)
q_values = model(states).gather(1, actions.unsqueeze(1)).squeeze() # 现在的Q值
target_q_values = target_model(next_states).max(1)[0].unsqueeze(1) * GAMMA * (~dones).float() + rewards # 标准化的目标Q值
# 梯度下降更新
loss = F.smooth_l1_loss(q_values, target_q_values)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if __name__ == "__main__":
for episode in range(NUM_EPISODES):
# ... 进行游戏环境交互,执行动作等
train_step(...)
# 定期更新目标网络参数
if episode % TARGET_UPDATE_FREQ == 0:
target_model.load_state_dict(model.state_dict())
```
在这个示例中,`BATCH_SIZE`是经验回放中的样本大小,`GAMMA`是折扣因子,`NUM_EPISODES`是总的训练回合数,`TARGET_UPDATE_FREQ`是目标网络参数同步频率。
阅读全文