dqn代码pytorch
时间: 2023-07-29 17:02:35 浏览: 159
DQN(Deep Q-Network)是一种使用深度学习网络对强化学习中的Q-learning算法进行改进的方法。代码实现可以使用PyTorch框架。下面是一个简单的示例代码:
首先,需要导入PyTorch库和其他必要的库,例如gym环境:
```
import torch
import torch.nn as nn
import torch.optim as optim
import gym
```
然后定义一个神经网络模型,用于近似Q函数。可以使用 nn.Module 类来创建模型。
```
class QNetwork(nn.Module):
def __init__(self, state_size, action_size):
super(QNetwork, self).__init__()
self.fc1 = nn.Linear(state_size, 24)
self.fc2 = nn.Linear(24, 24)
self.fc3 = nn.Linear(24, action_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
```
接下来,创建一个DQN对象,用于执行训练和测试:
```
class DQN:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = ReplayMemory() # Replay Memory用于存储训练数据
self.q_network = QNetwork(state_size, action_size) # 创建Q网络
self.target_network = QNetwork(state_size, action_size) # 创建目标网络
self.target_network.load_state_dict(self.q_network.state_dict())
self.optimizer = optim.Adam(self.q_network.parameters())
self.criterion = nn.MSELoss()
def train(self, batch_size):
if len(self.memory) < batch_size:
return
transitions = self.memory.sample(batch_size)
batch = Transition(*zip(*transitions))
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
next_state_batch = torch.cat(batch.next_state)
q_values = self.q_network(state_batch).gather(1, action_batch.unsqueeze(1))
next_q_values = self.target_network(next_state_batch).detach().max(1)[0]
expected_q_values = next_q_values * GAMMA + reward_batch
loss = self.criterion(q_values, expected_q_values.unsqueeze(1))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_network(self):
self.target_network.load_state_dict(self.q_network.state_dict())
def select_action(self, state, epsilon):
if torch.rand(1)[0] > epsilon:
with torch.no_grad():
q_values = self.q_network(state)
action = q_values.max(0)[1].view(1, 1)
else:
action = torch.tensor([[random.randrange(self.action_size)]], dtype=torch.long)
return action
```
通过上述代码,可以定义一个DQN类,其中包括训练、更新目标网络、选择动作等功能。具体来说,train函数用于执行网络的训练过程,update_target_network函数用于更新目标网络的参数,select_action函数用于选择动作。
最后,可以使用gym环境进行训练和测试:
```
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
dqn = DQN(state_size, action_size)
for episode in range(EPISODES):
state = env.reset()
state = torch.tensor([state], dtype=torch.float32)
done = False
while not done:
action = dqn.select_action(state, epsilon)
next_state, reward, done, _ = env.step(action.item())
next_state = torch.tensor([next_state], dtype=torch.float32)
reward = torch.tensor([reward], dtype=torch.float32)
dqn.memory.push(state, action, next_state, reward)
state = next_state
dqn.train(BATCH_SIZE)
if episode % TARGET_UPDATE == 0:
dqn.update_target_network()
```
这段代码旨在使用DQN算法对CartPole-v1环境进行训练。具体训练和测试的逻辑可以根据需要进行扩展和修改。希望以上内容对理解DQN的PyTorch实现有所帮助!
阅读全文