生成基于栅格地图的双向LSTM的路径规划代码输出路径,输入数据维度要正确
时间: 2024-06-09 07:06:54 浏览: 126
好的,下面是一个基于栅格地图的双向LSTM的路径规划代码,可以输出路径。需要注意的是,输入数据维度必须正确,否则会出现错误。
```python
import numpy as np
import tensorflow as tf
# 定义双向LSTM模型
class BiLSTM:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
# 定义前向LSTM
self.lstm_fw_cell = tf.nn.rnn_cell.LSTMCell(self.hidden_size)
# 定义后向LSTM
self.lstm_bw_cell = tf.nn.rnn_cell.LSTMCell(self.hidden_size)
# 定义前向LSTM的初始状态
self.initial_fw_state = self.lstm_fw_cell.zero_state(batch_size, tf.float32)
# 定义后向LSTM的初始状态
self.initial_bw_state = self.lstm_bw_cell.zero_state(batch_size, tf.float32)
# 定义前向LSTM的权重和偏置
self.W_fw = tf.Variable(tf.truncated_normal([self.input_size, self.hidden_size], stddev=0.1))
self.b_fw = tf.Variable(tf.constant(0.1, shape=[self.hidden_size]))
# 定义后向LSTM的权重和偏置
self.W_bw = tf.Variable(tf.truncated_normal([self.input_size, self.hidden_size], stddev=0.1))
self.b_bw = tf.Variable(tf.constant(0.1, shape=[self.hidden_size]))
# 定义输出层的权重和偏置
self.W_out = tf.Variable(tf.truncated_normal([self.hidden_size * 2, self.output_size], stddev=0.1))
self.b_out = tf.Variable(tf.constant(0.1, shape=[self.output_size]))
# 定义前向LSTM的计算图
def forward(self, inputs):
# 将输入数据转换为LSTM的输入格式
inputs = tf.reshape(inputs, [batch_size, -1, self.input_size])
# 将输入数据转换为LSTM需要的格式
inputs = tf.transpose(inputs, [1, 0, 2])
# 将输入数据按时间步展开,并计算前向LSTM
outputs_fw, states_fw = tf.nn.dynamic_rnn(self.lstm_fw_cell, inputs, initial_state=self.initial_fw_state, time_major=True)
# 将输入数据反向展开,并计算后向LSTM
outputs_bw, states_bw = tf.nn.dynamic_rnn(self.lstm_bw_cell, inputs[::-1], initial_state=self.initial_bw_state, time_major=True)
# 将前向和后向LSTM的输出按时间步合并
outputs = tf.concat([outputs_fw, outputs_bw[::-1]], axis=2)
# 将输出展开为二维矩阵
outputs = tf.reshape(outputs, [-1, self.hidden_size * 2])
# 计算输出层的输出
outputs = tf.matmul(outputs, self.W_out) + self.b_out
# 返回输出
return outputs
# 定义损失函数
def loss(self, output, target):
# 计算交叉熵损失
loss = tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=target)
# 计算平均损失
loss = tf.reduce_mean(loss)
# 返回损失
return loss
# 定义训练函数
def train(self, loss, learning_rate):
# 定义优化器
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
# 定义训练操作
train_op = optimizer.minimize(loss)
# 返回训练操作
return train_op
# 定义预测函数
def predict(self, output):
# 计算预测结果
prediction = tf.argmax(tf.nn.softmax(output), axis=1)
# 返回预测结果
return prediction
# 定义路径规划函数
def path_planning(grid_map, start_pos, end_pos):
# 将栅格地图转换为输入数据
input_data = np.array(grid_map)
input_data = np.expand_dims(input_data, axis=2)
# 获取输入数据的形状
input_shape = input_data.shape
# 定义模型参数
input_size = 1
hidden_size = 128
output_size = 2
learning_rate = 0.001
num_epochs = 1000
# 定义模型
model = BiLSTM(input_size, hidden_size, output_size)
# 定义输入和输出
inputs = tf.placeholder(tf.float32, [None, input_shape[1], input_shape[2]])
targets = tf.placeholder(tf.float32, [None, output_size])
# 定义前向计算
output = model.forward(inputs)
# 定义损失函数
loss = model.loss(output, targets)
# 定义训练操作
train_op = model.train(loss, learning_rate)
# 定义预测操作
predict_op = model.predict(output)
# 创建会话
with tf.Session() as sess:
# 初始化变量
sess.run(tf.global_variables_initializer())
# 训练模型
for epoch in range(num_epochs):
# 获取批次数据
x_batch = input_data
y_batch = np.array([[start_pos[0], start_pos[1]], [end_pos[0], end_pos[1]]])
# 计算损失和预测结果
loss_val, _ = sess.run([loss, train_op], feed_dict={inputs: x_batch, targets: y_batch})
pred = sess.run(predict_op, feed_dict={inputs: x_batch})
# 打印损失和预测结果
print("Epoch: {}, Loss: {}, Predictions: {}".format(epoch+1, loss_val, pred))
# 获取路径
path = []
pos = start_pos
while pos != end_pos:
path.append(pos)
pred_val = sess.run(predict_op, feed_dict={inputs: np.expand_dims(input_data[pos[0], pos[1]], axis=0)})
if pred_val == 0:
pos = (pos[0], pos[1]-1)
elif pred_val == 1:
pos = (pos[0], pos[1]+1)
elif pred_val == 2:
pos = (pos[0]-1, pos[1])
elif pred_val == 3:
pos = (pos[0]+1, pos[1])
# 添加终点
path.append(end_pos)
# 返回路径
return path
```
其中,`grid_map` 为栅格地图,`start_pos` 为起点坐标,`end_pos` 为终点坐标。`path_planning` 函数返回路径。
阅读全文