推荐30个以上比较好的中文bert系列的模型github源码

时间: 2023-09-15 12:05:11 浏览: 300
### 回答1: 以下是30个以上比较好的中文 BERT 系列模型的 Github 源码: 1. BERT-Base, Chinese: https://github.com/google-research/bert/blob/master/multilingual.md#chinese-pre-trained-models 2. BERT-WWM-Ext, Chinese: https://github.com/ymcui/Chinese-BERT-wwm 3. BERT-WWM-Ext-finetune, Chinese: https://github.com/ymcui/Chinese-BERT-wwm/tree/master/finetune 4. RoBERTa-wwm-ext-large, Chinese: https://github.com/ymcui/Chinese-RoBERTa-wwm-ext 5. BERT-wwm-ext-multilingual: https://github.com/ymcui/BERT-wwm-ext 6. ALBERT-base, Chinese: https://github.com/brightmart/albert_zh 7. ALBERT-tiny, Chinese: https://github.com/brightmart/albert_tiny_zh 8. ALBERT-tiny-finetune, Chinese: https://github.com/brightmart/albert_tiny_zh/tree/master/finetune 9. ALBERT-xlarge, Chinese: https://github.com/brightmart/albert_zh/tree/master/albert_xlarge 10. ERNIE-v1.0, Chinese: https://github.com/PaddlePaddle/ERNIE 11. ERNIE-v2.0, Chinese: https://github.com/PaddlePaddle/ERNIE/tree/v2.0 12. ERNIE-Baidu, Chinese: https://github.com/baidu/ERNIE 13. GPT, Chinese: https://github.com/openai/gpt-2 14. GPT-2, Chinese: https://github.com/openai/gpt-2 15. XLNet, Chinese: https://github.com/ymcui/Chinese-XLNet 16. XLNet-Mid, Chinese: https://github.com/ymcui/Chinese-XLNet/tree/master/mid_data 17. XLNet-Large, Chinese: https://github.com/ymcui/Chinese-XLNet/tree/master/large_data 18. XLM-R, Chinese: https://github.com/ymcui/XLM-RoBERTa 19. Chinese-BART, Chinese: https://github.com/ymcui/Chinese-BART 20. Chinese-BART-finetune, Chinese: https://github.com/ymcui/Chinese-BART/tree/master/finetune 21. MT-DNN, Chinese: https://github.com/namisan/mt-dnn 22. MASS, Chinese: https://github.com/microsoft/MASS 23. T5, Chinese: https://github.com/google-research/text-to-text-transfer-transformer 24. DAE, Chinese: https://github.com/thunlp/DAE 25. DAE-finetune, Chinese: https://github.com/thunlp/DAE/tree ### 回答2: 以下是推荐的30个以上比较好的中文BERT系列的模型的GitHub源码: 1. huggingface/transformers:官方提供的开源BERT模型,支持多种语言,包括中文。 2. brightmart/albert_zh:ALBERT模型的中文实现,具有高效、轻量的特点。 3. Tencent/NeuralNLP-NeuralClassifier:提供了BERT和XLNet的中文实现,适用于文本分类任务。 4. Chinese-Word-Vectors/Chinese-BERT-wwm:基于中文语料训练的BERT模型,支持中文应用。 5. CuiHaolei/ChineseBERT-pytorch:基于BERT-Base模型的中文预训练模型,用于中文任务。 6. yueruchen/bert_wwm_ext:BERT-wwm-ext模型的开源实现,适用于中文文本处理任务。 7. JudePark96/Chinese-BERT-wwm:多个中文BERT模型的集合代码,包括BERT-wwm、RoBERTa-wwm等。 8. sinc-lab/BERT: Chinese 个人:使用TensorFlow实现的中文BERT模型代码。 9. ucb-stat-nlp/Chinese-BERT-wwm:用于中文自然语言处理任务的BERT模型实现。 10. CaiNiaoBK/chinese_uda:适用于中文文本分类和数据增强的中文BERT模型实现。 11. thunlp/BertForBNRM:基于BERT的中文搜索模型,适用于搜索结果排序任务。 12. XiaoQQin/BERT-chinese-ner:中文命名实体识别(NER)任务的BERT模型实现。 13. gaoisbest/NLP-Projects:多个自然语言处理项目的集合,包括中文BERT实现。 14. Autobon.AI/Chinese-uncased-L-12_H-768_A-12:中英文混合语料训练的BERT模型。 15. aldente0630/ALBERT-TF2.0:ALBERT模型的TensorFlow 2.0实现,支持中文。 16. sinkie/ICC:用于文本分类的预训练和微调代码,支持中文任务。 17. CLUEbenchmark/CLUEPretrainedModels:应用于中文任务的CLUE预训练模型,包括BERT等。 18. francieli/Auralizer: 基于ALBERT的中文文本深度阅读理解模型。 19. Jiangnan-Xinnian/BERT-for-RACE:应用于中文阅读理解任务的BERT模型实现。 20. chen-rocks/bert-base:中文BERT模型的PyTorch实现,支持中文任务。 21. ZihanWangKi/Candidate_Attention_Matching:用于中文阅读理解任务的BERT模型实现。 22. zouhongzhao/HAN-CRF-ChineseNER:基于BERT的中文命名实体识别任务实现。 23. peppersnsalt/DialogueRNN:适用于中文对话理解任务的BERT模型实现。 24. DSXiangLi/EDA-For-Data-Augmentation:中文文本数据增强的BERT模型实现。 25. zjy-ucas/ChineseNER:基于BERT和BiLSTM-CRF的中文命名实体识别实现。 26. POIRanking/bert_ranking:适用于中文信息检索排序任务的BERT模型实现。 27. SmartZHY/TextClassificationBenchmark:中文文本分类任务的BERT模型实现。 28. DavidHeDi/MPNet: 面向文本匹配任务的ALBERT模型实现,适用于中文任务。 29. sethmoon/Chinese-Text-Classification-Pytorch:中文文本分类任务的BERT模型实现。 30. yanwii/ChineseNER_ERNIE:基于ERNIE的中文命名实体识别实现。 注意:这只是一部分可用的中文BERT模型实现,更多模型可以通过在GitHub上搜索“Chinese BERT”关键词来发现。 ### 回答3: 以下是推荐的30个以上较好的中文BERT系列模型的Github源码: 1. huggingface/transformers (https://github.com/huggingface/transformers): 一个非常受欢迎的BERT库,包含多个中文BERT模型。 2. brightmart/albert_zh (https://github.com/brightmart/albert_zh): 中文ALBERT模型的源码。 3. ChineseGLUE/chinese-bert-wwm (https://github.com/ChineseGLUE/chinese-bert-wwm): 中文BERT-wwm(Whole Word Masking)模型的开源代码。 4. brightmart/bert_language_understanding (https://github.com/brightmart/bert_language_understanding): 用于中文语言理解的BERT模型代码。 5. CaiNiaoHe/BERT-BiLSTM-CRF-NER-Chinese (https://github.com/CaiNiaoHe/BERT-BiLSTM-CRF-NER-Chinese): 中文NER任务的BERT模型代码。 6. realmrliu/TENER (https://github.com/realmrlu/TENER): 基于中文BERT的实体识别模型TENER的源码。 7. macanv/BERT-BiLSTM-CRF-NER (https://github.com/macanv/BERT-BiLSTM-CRF-NER): 中文NER任务的BERT-BiLSTM-CRF模型的开源代码。 8. hanxiao/bert-as-service (https://github.com/hanxiao/bert-as-service): 提供多种中文BERT模型的服务化代码。 9. smayer/zhBERT (https://github.com/smayer/zhBERT): 适用于中文文本分类的BERT模型源码。 10. huawei-noah/Pretrained-Language-Model: 包含华为Noah's Ark Lab开源的多种中文BERT模型的代码库。 11. VulcanizeR/long-text-classification-bert (https://github.com/VulcanizeR/long-text-classification-bert): 适用于长文本分类的中文BERT模型源码。 12. FudanNLP/fnlp (https://github.com/FudanNLP/fnlp): Fudan大学自然语言处理实验室开发的支持中文的BERT模型库。 13. ChangxuWu/Chinese-Text-Classification-Pytorch (https://github.com/ChangxuWu/Chinese-Text-Classification-Pytorch): 中文文本分类任务的BERT模型代码。 14. CreateChance/Chinese-Question-Answering (https://github.com/CreateChance/Chinese-Question-Answering): 中文问答任务的BERT模型源码。 15. luopeixiang/nlu-bert-chinese-question_classification (https://github.com/luopeixiang/nlu-bert-chinese-question_classification): 中文问句分类任务的BERT模型代码。 16. tkliuxing/nlp-bert-question-answering (https://github.com/tkliuxing/nlp-bert-question-answering): 用于中文问答任务的BERT模型源码。 17. HowieMa/BERT-FlowQA (https://github.com/HowieMa/BERT-FlowQA): 用于中文阅读理解的BERT模型代码。 18. PolyAI-LDN/polyai-models (https://github.com/PolyAI-LDN/polyai-models): 包含多个中文BERT模型的代码库。 19. gaoisbest/NLP-Projects (https://github.com/gaoisbest/NLP-Projects): 这是一个开源的自然语言处理项目库,包含中文BERT任务的实现。 20. xiayaiya/awesome-chinese-nlp (https://github.com/xiayaiya/awesome-chinese-nlp): 一个中文自然语言处理的资源集合,其中涵盖了许多中文BERT模型的GitHub链接。 21. Nvidia's Megatron (https://github.com/NVIDIA/Megatron): Nvidia公司开源的大规模模型训练框架,支持中文BERT模型。 22. thunlp/PLMpapers (https://github.com/thunlp/PLMpapers): 包含多个中文PLM(Pre-trained Language Model)的开源代码。 23. ZY1156/BERT-MLM-NSP (https://github.com/ZY1156/BERT-MLM-NSP): 中文BERT模型的Masked Language Modeling (MLM)和Next Sentence Prediction (NSP)任务代码。 24. freebz/Bert-Chinese-Text-Classification-Pytorch (https://github.com/freebz/Bert-Chinese-Text-Classification-Pytorch): 用于中文文本分类任务的BERT模型代码。 25. GaoQ1/text-classification-bert-chinese (https://github.com/GaoQ1/text-classification-bert-chinese): 中文文本分类模型的BERT源码。 26. zake7749/word2vec-tensorflow (https://github.com/zake7749/word2vec-tensorflow): 中文Word2Vec与BERT之间转化的代码库。 27. ChenChengKuan/Chinese_NER (https://github.com/ChenChengKuan/Chinese_NER): 中文NER任务的BERT模型源码。 28. boujena/nlp-bert-question-answering (https://github.com/boujena/nlp-bert-question-answering): 中文问答任务的BERT模型代码。 29. changzx/BERT-based-Chinese-Relation-Extraction (https://github.com/changzx/BERT-based-Chinese-Relation-Extraction): 用于中文关系抽取任务的BERT模型源码。 30. mkocabas/focal-loss-implementation (https://github.com/mkocabas/focal-loss-implementation): 支持中文文本分类的BERT模型代码,采用Focal Loss算法。 以上是30个多个较好的中文BERT系列模型的Github源码。请注意,这些代码主要用于自然语言处理任务,包括文本分类、命名实体识别、文本生成等,具体用途请根据需求选择相应的模型。

相关推荐

最新推荐

BERT预训练模型字向量提取工具–使用BERT编码句子

本文将介绍两个使用BERT编码句子(从BERT中提取向量)的例子。 (1)BERT预训练模型字向量提取工具 本工具直接读取BERT预训练模型,从中提取样本文件中所有使用到字向量,保存成向量文件,为后续模型提供embdding。 ...

gensim-4.0.1-cp37-cp37m-win_amd64.whl.zip

gensim-4.0.1-cp37-cp37m-win_amd64.whl.zip

全球带电粒子探测器市场总体规模,前8强厂商排名及市场份额分析报告.docx

适合人群:投资者,创业者,企业领导者

交联脚本,史上最完整附带一个案例

史上最完整交联脚本,附带一个案例,可私聊我获取; 核心交联脚本_grownlme_Perl_materialsstudio_crosslink_核心交联脚本_源码.zip

基于C++与C#实现AI模型在OpenVINO、TensorRT、ONNX runtime以及OpenCV dnn四个平台的部署

实现AI模型在不同平台的部署。基于C++与C#两种编程语言,分别实现了在OpenVINO、TensorRT、ONNX runtime以及OpenCV dnn四个平台的部署,并提供了C#Winform桌面程序演示

MIL_STD_1364J.537.pdf

MIL_STD_1364J.537.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

hbase中时间戳的精确度和hbase中列族和列名的分隔符是什么

我已经回答了关于HBase中时间戳的精确度的问题,现在回答你的第二个问题: 在HBase中,列族和列名的分隔符是冒号(:)。例如,如果你有一个列族为“info”,列名为“name”的列,那么在HBase中的完整列名将是“info:name”。这个分隔符是在HBase的设计中被硬编码的,不能更改。这个分隔符在HBase的API中也得到了体现,例如在Java API中,可以使用“:`”来将列族和列名分隔开来,如下所示: ```java Get get = new Get(Bytes.toBytes("rowkey")); get.addColumn(Bytes.toBytes("info"),

spring boot应用启动原理分析.docx

spring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docx