tcn pytorch实现
时间: 2023-11-01 17:08:47 浏览: 221
TCN(Temporal Convolutional Networks)是一种利用卷积神经网络处理时间序列数据的方法,它可以通过并行卷积层提取不同时间尺度的特征,并在最后一层中进行组合,从而达到更好的性能。以下是TCN在PyTorch中的实现示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_channels = num_channels
self.kernel_size = kernel_size
self.dropout = dropout
self.layers = []
self.num_levels = len(num_channels)
# Dilated Convolutional Layers
for i in range(self.num_levels):
dilation_size = 2 ** i
in_channels = self.input_size if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
self.layers += [DilatedConv1d(in_channels, out_channels, kernel_size, dilation=dilation_size)]
# Residual Blocks and Dropout
self.res_blocks = nn.Sequential(*self.layers)
self.dropout = nn.Dropout(dropout)
# Output Layer
self.fc = nn.Linear(num_channels[-1], output_size)
def forward(self, x):
out = self.res_blocks(x)
out = F.relu(out) # ReLU Activation
out = F.avg_pool1d(out, kernel_size=out.size()[2]) # Global Average Pooling
out = self.dropout(out)
out = self.fc(out.squeeze())
return out
class DilatedConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation=1):
super(DilatedConv1d, self).__init__()
self.kernel_size = kernel_size
self.dilation = dilation
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation)
self.padding = (kernel_size - 1) * dilation
def forward(self, x):
padding = x.size()[2] % self.kernel_size
if padding != 0:
padding = self.kernel_size - padding
x = F.pad(x, (self.padding, 0))
out = self.conv(x)
return out
```
阅读全文