TCN pytorch 代码
时间: 2023-11-22 21:50:06 浏览: 129
以下是一个TCN的PyTorch版本代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class TemporalBlock(nn.Module):
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding):
super(TemporalBlock, self).__init__()
self.conv1 = nn.Conv1d(n_inputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation)
self.chomp1 = nn.ConstantPad1d((0, 1), 0)
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(0.5)
self.conv2 = nn.Conv1d(n_outputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation)
self.chomp2 = nn.ConstantPad1d((0, 1), 0)
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(0.5)
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
self.conv2, self.chomp2, self.relu2, self.dropout2)
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
self.relu = nn.ReLU()
def forward(self, x):
out = self.net(x)
res = x if self.downsample is None else self.downsample(x)
return self.relu(out + res)
class TemporalConvNet(nn.Module):
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2 ** i
in_channels = num_inputs if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
padding=(kernel_size-1) * dilation_size)]
self.network = nn.Sequential(*layers)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.dropout(self.network(x))
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.tcn = TemporalConvNet(input_size, num_channels, kernel_size=kernel_size, dropout=dropout)
self.linear = nn.Linear(num_channels[-1], output_size)
def forward(self, x):
y1 = self.tcn(x.transpose(1, 2))
return self.linear(y1[:, :, -1])
```
阅读全文