for in = 1:nlayer a{in} = zeros(arch(in),mini_batch_size); z{in} = zeros(arch(in),mini_batch_size); end

时间: 2024-02-19 12:01:22 浏览: 70
这段代码是对神经网络中每一层的激活值a和加权输入值z进行初始化: - 对于每一层in,a{in}和z{in}都被初始化为一个大小为arch(in)×mini_batch_size的矩阵,其中mini_batch_size是小批量梯度下降法中每个小批量的大小,代表了一次迭代中使用的样本数量。 - 初始化为0的原因是,在每次迭代中,激活值和加权输入值都会被重新计算,因此在初始化时不需要赋予任何初始值。
相关问题

function [a,z] = feedforward(hidenActiFcn,outputActiFcn,weight,bias,nlayer,mini_batch_size,a,z) %FEEDFORWARD Return the output of the network % for in = 2:nlayer-1 w = weight{in}; b = bias{in}; ix = a{in-1}; %小技巧, iz = bsxfun(@plus,w*ix,b); a{in} = hidenActiFcn(iz); z{in} = iz; end w = weight{nlayer}; b = bias{nlayer}; ix = a{nlayer-1}; iz = bsxfun(@plus,w*ix,b); a{nlayer} = outputActiFcn(iz); z{nlayer} = iz; end

这是一个神经网络的前向传播函数,它将输入数据通过网络的各个层进行计算,最终得到输出结果。其中,hidenActiFcn和outputActiFcn分别是隐藏层和输出层的激活函数,weight和bias是各层的权重和偏置,nlayer是网络的层数,mini_batch_size是每次输入数据的批次,a和z是各层的激活值和加权和。 在函数中,循环遍历每个隐藏层,计算该层的激活值和加权和,然后将其作为下一层的输入。最后,计算输出层的激活值和加权和,得到最终的输出结果。值得注意的是,函数中使用了bsxfun函数进行矩阵运算,这是一种优化计算速度的技巧。

function [weight,bias] = SGD(hidenActiFcn,outputActiFcn,weight,bias,nabla_weight,nabla_bias,nlayer,mini_batch_size,eta,a,z,y,lambda,n) %SGD stochastic gradient descent delta = (a{nlayer}-y).*outputActiFcn(z{nlayer}); nabla_bias{end} = mean(delta,2); nabla_weight{end} = (delta*a{end-1}')/mini_batch_size; for in = nlayer-1:-1:2 delta = weight{in+1}'*delta.*hidenActiFcn(z{in}); nabla_bias{in} = mean(delta,2); nabla_weight{in} = (delta*a{in-1}')/mini_batch_size; end for in = 2:nlayer weight{in} = (1-eta*lambda/n)*weight{in} - eta*nabla_weight{in}; bias{in} = bias{in} - eta*nabla_bias{in}; end end

这段代码是实现了一个基于随机梯度下降(Stochastic Gradient Descent, SGD)算法的神经网络训练函数。该函数接收的输入参数包括: - `hidenActiFcn`,隐藏层的激活函数类型; - `outputActiFcn`,输出层的激活函数类型; - `weight`,网络的权重参数; - `bias`,网络的偏置参数; - `nabla_weight`,当前mini-batch的权重梯度; - `nabla_bias`,当前mini-batch的偏置梯度; - `nlayer`,神经网络的层数; - `mini_batch_size`,mini-batch的大小; - `eta`,学习率; - `a`,每层的激活值; - `z`,每层的加权输入值; - `y`,期望输出值; - `lambda`,L2正则化系数; - `n`,训练集大小。 具体来说,该函数实现了以下步骤: 1. 计算输出层的偏导数 `delta = (a{nlayer}-y).*outputActiFcn(z{nlayer})`,并计算输出层的权重和偏置的梯度 `nabla_bias{end} = mean(delta,2); nabla_weight{end} = (delta*a{end-1}')/mini_batch_size;`。 2. 从倒数第二层开始,计算每一层的偏导数和梯度,并将其存储在 `delta`、`nabla_bias` 和 `nabla_weight` 中。 3. 根据梯度下降算法更新每层的权重和偏置参数。 4. 返回更新后的权重和偏置参数。 其中,步骤3中的权重和偏置参数的更新公式为: ```matlab weight{in} = (1-eta*lambda/n)*weight{in} - eta*nabla_weight{in}; bias{in} = bias{in} - eta*nabla_bias{in}; ``` 其中,`in` 表示当前层的下标。这里使用了L2正则化来防止过拟合。
阅读全文

相关推荐

最新推荐

recommend-type

打开新的窗体,关闭当前窗体的一个简单方法,更改主程序地方很少。不妨一试哦

在实际应用中,当你希望从`Form1`切换到`Form2`时,只需要在`Form1`的某个事件处理程序(例如按钮点击事件)中添加以下代码: ```csharp Program.frmNext = new Form2(); this.Close(); ``` 这样,`Form1`会关闭,...
recommend-type

2023年第三届长三角数学建模c题考试题目.zip

2023年第三届长三角数学建模c题考试题目,可下载练习
recommend-type

基于人工智能的毕业设计辅助系统基础教程

随着人工智能技术的飞速发展,越来越多的学生和研究人员开始利用AI技术来辅助他们的毕业设计。本教程旨在指导读者如何开发一个基于人工智能的毕业设计辅助系统,帮助学生更高效地完成毕业设计任务。
recommend-type

yolo算法-人脸情绪数据集-9400张图像带标签-内容-愤怒-害怕-厌恶-中立的-惊喜-悲哀的-幸福的.zip

yolo系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值
recommend-type

ijkplayer播放rtsp延时越来越高处理方案

文件1
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。