import timex =1for i in range(10): x = pow(x,100) print("Processing... {}/10".format(i+1)) print("Result: {}".format(x)) time.sleep(.5) print("\033c", end="")

时间: 2023-05-21 07:01:13 浏览: 38
这是一段 Python 代码,它将计算 x 的 100 次方并输出结果。在每次计算之后,它还会清空屏幕并打印出处理进度。其中的 time.sleep(.5) 可以让程序暂停 0.5 秒,以便更好地观察处理进度。
相关问题

改进代码 import serial import time try: portx = "COM3" bps = 9600 timex = 5 ser = serial.Serial(portx, bps, timeout=timex) print("串口详情参数:", ser) for i in range(1, 100000): print(i) ser.write("t6.txt=\"{}\"".format(str(i)).encode("GB2312")) ser.write(bytes.fromhex('ff ff ff')) time.sleep(0.1) ser = serial.Serial(portx, bps, timeout=timex) print("串口详情参数:", ser) for i in range(1, 100000) : print(i) ser.write("t7.txt=\"{}\"".format(str(i)).encode("GB2312")) ser.write(bytes.fromhex('ff ff ff')) time.sleep(0.1) ser = serial.Serial(portx, bps, timeout=timex) print("串口详情参数:", ser) for i in range(1, 1000000) : print(i) ser.write("t8.txt=\"{}\"".format(str(i)).encode("GB2312")) ser.write(bytes.fromhex('ff ff ff')) time.sleep(0.1) except Exception as e: print("---异常---:", e) finally: ser.close()

这段代码主要是通过串口向某个设备发送信息,其中有一些可以改进的地方: 1. 在每次循环中都重新打开了串口,这样会增加系统负担,最好在程序开始时就打开串口并保持打开状态,程序结束时再关闭串口。 2. 写入串口的字符串中包含了中文字符,需要使用 GB2312 编码进行转换,但这种编码并不稳定,建议使用 UTF-8 编码。 3. 在写入串口时,每次都发送了一个字节流 'ff ff ff',这个字节流可能是数据传输时的标志,但在代码中没有注释说明,可以考虑添加注释。 下面是改进后的代码: ```python import serial import time # 打开串口 portx = "COM3" bps = 9600 timex = 5 ser = serial.Serial(portx, bps, timeout=timex) print("串口详情参数:", ser) try: # 循环写入 t6.txt for i in range(1, 100000): print(i) msg = "t6.txt=\"{}\"".format(str(i)) ser.write(msg.encode("utf-8")) ser.write(b'\xff\xff\xff') # 发送标志 time.sleep(0.1) # 循环写入 t7.txt for i in range(1, 100000): print(i) msg = "t7.txt=\"{}\"".format(str(i)) ser.write(msg.encode("utf-8")) ser.write(b'\xff\xff\xff') # 发送标志 time.sleep(0.1) # 循环写入 t8.txt for i in range(1, 1000000): print(i) msg = "t8.txt=\"{}\"".format(str(i)) ser.write(msg.encode("utf-8")) ser.write(b'\xff\xff\xff') # 发送标志 time.sleep(0.1) except Exception as e: print("---异常---:", e) finally: # 关闭串口 ser.close() ```

改进代码 import serial #导入模块 try: #端口,GNU / Linux上的/ dev / ttyUSB0 等 或 Windows上的 COM3 等 portx="COM4" #波特率,标准值:2400 4800 9600 19200 38400 57600 115200 230400 256000 512000 921600 bps=9600 #超时设置,None:永远等待操作,0为立即返回请求结果,其他值为等待超时时间(单位为秒) timex=5 # 打开串口,并得到串口对象 ser=serial.Serial(portx,bps,timeout=timex) print("串口详情参数:", ser) for i in range(1, 10000): print(i) ser.write("t6.txt=\"{}\"".format(str(i)).encode("GB2312")) ser.write(bytes.fromhex('ff ff ff')) time.sleep(0.1) ser.close() # 关闭串口 except Exception as e: print("---异常---:",e)

你的代码看起来已经很不错了,不过我有几个小建议: 1. 在写串口通信程序时,最好加上异常处理,以防出现意外情况导致程序崩溃。你已经在代码中加上了 try-except 语句,很好! 2. 当你使用串口通信时,最好在每次发送数据之间加上一定的延时,以确保数据能够被接收方完整接收。你已经在代码中加上了 time.sleep(0.1),看起来已经足够了。 3. 在写串口通信程序时,最好将串口对象的关闭放在 finally 块中,以确保无论程序是否出现异常,都能够正确关闭串口。你可以将 ser.close() 放在 try-except 块之外,用 finally 块来实现这一点。 下面是修改后的代码: ``` import serial import time try: portx = "COM4" bps = 9600 timex = 5 ser = serial.Serial(portx, bps, timeout=timex) print("串口详情参数:", ser) for i in range(1, 10000): print(i) ser.write("t6.txt=\"{}\"".format(str(i)).encode("GB2312")) ser.write(bytes.fromhex('ff ff ff')) time.sleep(0.1) except Exception as e: print("---异常---:", e) finally: ser.close() ``` 希望能对你有所帮助!

相关推荐

帮我将代码修改为标准库 void atim_timx_cplm_pwm_init(uint16_t arr, uint16_t psc) { TIM_OC_InitTypeDef sConfigOC ; g_atimx_cplm_pwm_handle.Instance = ATIM_TIMX_CPLM; /* 定时器x */ g_atimx_cplm_pwm_handle.Init.Prescaler = psc; /* 定时器预分频系数 */ g_atimx_cplm_pwm_handle.Init.CounterMode = TIM_COUNTERMODE_UP; /* 向上计数模式 */ g_atimx_cplm_pwm_handle.Init.Period = arr; /* 自动重装载值 */ g_atimx_cplm_pwm_handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; /* 时钟分频因子 */ g_atimx_cplm_pwm_handle.Init.RepetitionCounter = 0; /* 重复计数器寄存器为0 */ g_atimx_cplm_pwm_handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; /* 使能影子寄存器TIMx_ARR */ HAL_TIM_PWM_Init(&g_atimx_cplm_pwm_handle) ; /* 设置PWM输出 */ sConfigOC.OCMode = TIM_OCMODE_PWM1; /* PWM模式1 */ sConfigOC.Pulse = 0; /* 比较值为0 */ sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW; /* OCy 低电平有效 */ sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW; /* OCyN 低电平有效 */ sConfigOC.OCFastMode = TIM_OCFAST_ENABLE; /* 不使用快速模式 */ sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; /* 主通道的空闲状态 */ sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; /* 互补通道的空闲状态 */ HAL_TIM_PWM_ConfigChannel(&g_atimx_cplm_pwm_handle, &sConfigOC, ATIM_TIMX_CPLM_CHY); /* 配置后默认清CCER的互补输出位 */ /* 设置死区参数,开启死区中断 */ sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE; /* OSSR设置为1 */ sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; /* OSSI设置为0 */ sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; /* 上电只能写一次,需要更新死区时间时只能用此值 */ sBreakDeadTimeConfig.DeadTime = 0X0F; /* 死区时间 */ sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; /* BKE = 0, 关闭BKIN检测 */ sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW; /* BKP = 1, BKIN低电平有效 */ sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; /* 使能AOE位,允许刹车后自动恢复输出 */ HAL_TIMEx_ConfigBreakDeadTime(&g_atimx_cplm_pwm_handle, &sBreakDeadTimeConfig); /* 设置BDTR寄存器 */ }

void TIM2_PWMShiftInit_3(TypeDef_Tim* Tim) { TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; GPIO_InitTypeDef GPIO_InitStruct = {0}; Tim->Psc=3; Tim->TimeClock=200000000;// Tim->Frequence=2000;// Tim->Duty=0.5; Tim->DT=2000;// Tim->Arr=Tim->TimeClock/(Tim->Psc+1)/Tim->Frequence/2;// // Tim->CH1Ccr=Tim->Arr-(Tim->Arr*Tim->Duty)-Tim->DT/((Tim->Psc+1)*(1000000000.0f/Tim->TimeClock));// Tim->CH2Ccr=Tim->Arr-(Tim->Arr*Tim->Duty); Tim->Htim.Instance = TIM2; Tim->Htim.Init.Prescaler = Tim->Psc; Tim->Htim.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED3; Tim->Htim.Init.Period = Tim->Arr; Tim->Htim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; Tim->Htim.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; HAL_TIM_Base_Init(&Tim->Htim); HAL_TIM_Base_Start_IT(&Tim->Htim);// sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; HAL_TIM_ConfigClockSource(&Tim->Htim, &sClockSourceConfig); HAL_TIM_OC_Init(&Tim->Htim); sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(&Tim->Htim, &sMasterConfig); sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = Tim->CH1Ccr; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;// sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_OC_ConfigChannel(&Tim->Htim, &sConfigOC, TIM_CHANNEL_3); __HAL_TIM_ENABLE_OCxPRELOAD(&Tim->Htim, TIM_CHANNEL_3); sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = Tim->CH2Ccr; sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;// sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_OC_ConfigChannel(&Tim->Htim, &sConfigOC, TIM_CHANNEL_4); __HAL_TIM_ENABLE_OCxPRELOAD(&Tim->Htim, TIM_CHANNEL_4); __HAL_RCC_GPIOB_CLK_ENABLE(); /**TIM2 GPIO Configuration PB10 ------> TIM2_CH3 PB11 ------> TIM2_CH4 */ GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF1_TIM2; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); HAL_TIM_PWM_Start(&Tim->Htim, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&Tim->Htim, TIM_CHANNEL_4); } TIM2_PWMShiftInit_3(&MyTim2);是什么意思

帮我转换成HAL库 void TIM2_PWM_Output(float Duty , uint32_t Frequency) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; NVIC_InitTypeDef NVIC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); /* GPIOA clock enable */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO ,ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 ; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); /* Time base configuration */ TIM_TimeBaseStructure.TIM_Period = (1000000/Frequency)-1; //ARR = (TIM3 counter clock /Frequency)-1 TIM_TimeBaseStructure.TIM_Prescaler = 71; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); /* PWM1 Mode configuration: Channel3 */ TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = ((1000000/Frequency)-1)*Duty; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC3Init(TIM2, &TIM_OCInitStructure); TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable); TIM_ARRPreloadConfig(TIM2, ENABLE); /* TIM3 enable counter */ TIM_Cmd(TIM2, ENABLE); }

最新推荐

步行高级机器人技术.doc

步行高级机器人技术.doc

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

c语言本题要求编写程序,计算学生们的平均成绩,并统计不及格人数。题目保证输入输出均在整型范围内。

好的,下面是一个简单的 C 语言程序,可以帮助你计算学生们的平均成绩,并统计不及格人数: ```c #include <stdio.h> int main() { int n, sum = 0, fail = 0; scanf("%d", &n); // 输入学生数量 for (int i = 0; i < n; i++) { int score; scanf("%d", &score); // 输入学生的成绩 sum += score; // 累加学生的成绩 if (score < 60) {

资料计算机二级Python真题及答案解析1练习.pdf

。。。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索

pyinstaller --onefile your_program.py 这段代码添加到程序的什么位置

在使用 PyInstaller 封装 Python 程序时,需要在命令行中执行 PyInstaller 的命令,而不是将命令添加到程序中。 具体来说,需要在命令行中进入 Python 程序所在的目录,然后执行以下命令: ``` pyinstaller --onefile your_program.py ``` 其中,--onefile 表示将程序打包成一个单独的可执行文件,your_program.py 是你要打包的 Python 程序的文件名。 执行完毕后,PyInstaller 会在当前目录下生成一个 dist 文件夹,其中包含了打包好的可执行文件和依赖库等文件。 需要注意的是,

提升效率和用户体验,携程门票活动商品结构演进.docx

提升效率和用户体验,携程门票活动商品结构演进.docx

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩