Transformer Decoder Blocks
时间: 2024-10-10 19:06:49 浏览: 47
Transformer Decoder Block是Transformer架构的一个关键组成部分,它主要用于处理序列数据中的自回归预测,例如在机器翻译、语言建模等任务中。这个块通常包含以下几个部分:
1. **Multi-Head Self-Attention**(MHSA):这是Decoder特有的,与Encoder的Self-Attention不同,它是掩码的(Masked)。因为Decoder需要预测下一个词,所以前向传播时会避免看到未来的输入,这种自注意力机制被称为“自注意力掩蔽”。
2. **Feed Forward Network (FFN)**:类似于Encoder中的FFN,包括两个线性变换层,中间插入了非线性的激活函数,如ReLU。
3. **Layer Normalization**:对每一层的输出进行标准化,有助于改善梯度流和加速收敛。
4. **残差连接**:像Encoder一样,每个Decoder Block的输出会被添加到其输入上,通过跳过连接提高模型的学习能力。
5. **Position-wise Feed-Forward Networks**:虽然这部分在Encoder和Decoder中都存在,但在Decoder中,这部分通常紧接在MHSA之后,而不会像Encoder那样紧跟在自注意力之后。
每一个Decoder Block都是为了捕捉上下文中依赖关系的局部特征,并将其传递给下一个Block进行进一步处理。
相关问题
Transformer building blocks是什么
Transformer building blocks是指用于构建Transformer模型的基本组件,它通常包括多头自注意力机制(multi-head self-attention mechanism)和前馈神经网络(feed-forward neural network)。在Transformer模型中,这两个组件被称为encoder和decoder,它们通过堆叠多个相同的building block来构建整个模型。
在encoder中,每个building block将输入序列进行多头自注意力计算和前馈神经网络计算,以生成一系列隐藏表示。在decoder中,每个building block将上一层decoder的输出、编码器的输出和自注意力计算结合起来,生成下一层decoder的输出。通过这种方式,Transformer模型可以有效地捕捉输入序列中的长程依赖关系,从而在自然语言处理等任务中取得了很好的效果。
Transformer的
Transformer是一种用于序列到序列(seq2seq)学习的神经网络模型,由“Attention is All You Need”一文提出。Transformer使用自注意力机制来处理变长输入,可以用于各种自然语言处理(NLP)任务,如机器翻译、文本摘要等。
下面是Transformer的基本结构[^1]:
- Encoder: 由多个编码器块组成,每个编码器块包含多头自注意力层和前馈网络。
- Decoder: 由多个解码器块组成,每个解码器块包含多头自注意力层、多头编码器-解码器注意力层和前馈网络。
- 损失函数: 一般使用交叉熵损失函数来计算模型预测结果与真实结果之间的误差。
训练步骤如下[^2]:
1. 首先将原始文本转换为词向量,然后将其传入Transformer的编码器中。
2. 编码器将输入的词向量序列转换为一组上下文感知的编码向量,并将其传递给解码器。
3. 解码器接受编码器的输出,并利用它们来生成输出序列的下一个词。
4. 模型根据下一个期望的输出词,预测下一个正确的输出。
5. 计算模型预测结果与真实结果之间的误差,并使用梯度下降法更新模型的参数。
下面是一个用于英语到德语的机器翻译的Transformer的例子[^3]:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Input, Dense, LayerNormalization, Dropout, Embedding, Multiply, Add, Concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.losses import SparseCategoricalCrossentropy
from tensorflow.keras.optimizers import Adam
# 构建Transformer模型
def transformer_model(src_input, tar_input, src_vocab_size, tar_vocab_size, d_model, n_heads, n_encoders, n_decoders, dropout=0.1):
# Encoder部分
# Input
src_word_embedding = Embedding(input_dim=src_vocab_size, output_dim=d_model)(src_input)
src_position_embedding = Embedding(input_dim=src_vocab_size, output_dim=d_model)(src_input)
src_encoder = Add()([src_word_embedding, src_position_embedding])
src_encoder = Dropout(dropout)(src_encoder)
# Encoder Blocks
for i in range(n_encoders):
src_encoder = encoder_block(src_encoder, d_model, n_heads, dropout)
# Decoder部分
# Input
tar_word_embedding = Embedding(input_dim=tar_vocab_size, output_dim=d_model)(tar_input)
tar_position_embedding = Embedding(input_dim=tar_vocab_size, output_dim=d_model)(tar_input)
tar_encoder = Add()([tar_word_embedding, tar_position_embedding])
tar_encoder = Dropout(dropout)(tar_encoder)
# Decoder Blocks
for i in range(n_decoders):
tar_encoder = decoder_block(tar_encoder, src_encoder, d_model, n_heads, dropout)
output = Dense(tar_vocab_size, activation='softmax')(tar_encoder)
model = Model(inputs=[src_input, tar_input], outputs=output)
return model
# Encoder Block
def encoder_block(inputs, d_model, n_heads, dropout=0.1):
# Multi-head Attention
attention_output, _ = MultiHeadAttention(n_heads, d_model)(inputs, inputs, inputs)
attention_output = Dropout(dropout)(attention_output)
attention_output = LayerNormalization(epsilon=1e-6)(Add()([inputs, attention_output]))
# Feed Forward
feed_forward_output = Dense(2048, activation='relu')(attention_output)
feed_forward_output = Dropout(dropout)(feed_forward_output)
feed_forward_output = Dense(d_model, activation=None)(feed_forward_output)
feed_forward_output = Dropout(dropout)(feed_forward_output)
feed_forward_output = LayerNormalization(epsilon=1e-6)(Add()([attention_output, feed_forward_output]))
return feed_forward_output
# Decoder Block
def decoder_block(inputs, enc_outputs, d_model, n_heads, dropout=0.1):
# Masked Multi-head Attention
attention_output_1, _ = MultiHeadAttention(n_heads, d_model)(inputs, inputs, inputs, mask='subsequent')
attention_output_1 = Dropout(dropout)(attention_output_1)
attention_output_1 = LayerNormalization(epsilon=1e-6)(Add()([inputs, attention_output_1]))
# Multi-head Attention
attention_output_2, _ = MultiHeadAttention(n_heads, d_model)(attention_output_1, enc_outputs, enc_outputs)
attention_output_2 = Dropout(dropout)(attention_output_2)
attention_output_2 = LayerNormalization(epsilon=1e-6)(Add()([attention_output_1, attention_output_2]))
# Feed Forward
feed_forward_output = Dense(2048, activation='relu')(attention_output_2)
feed_forward_output = Dropout(dropout)(feed_forward_output)
feed_forward_output = Dense(d_model, activation=None)(feed_forward_output)
feed_forward_output = Dropout(dropout)(feed_forward_output)
feed_forward_output = LayerNormalization(epsilon=1e-6)(Add()([attention_output_2, feed_forward_output]))
return feed_forward_output
# Multi-Head Attention
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, n_heads, d_model):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.d_model = d_model
assert d_model % self.n_heads == 0
self.depth = d_model // self.n_heads
self.query = Dense(d_model, activation=None)
self.key = Dense(d_model, activation=None)
self.value = Dense(d_model, activation=None)
self.fc = Dense(d_model, activation=None)
def split_heads(self, inputs):
batch_size = tf.shape(inputs)
inputs = tf.reshape(inputs, shape=(batch_size, -1, self.n_heads, self.depth))
return tf.transpose(inputs, perm=[0, 2, 1, 3])
def call(self, q, k, v, mask=None):
q = self.query(q)
k = self.key(k)
v = self.value(v)
q = self.split_heads(q)
k = self.split_heads(k)
v = self.split_heads(v)
scaled_attention, attention_weights = self.scaled_dot_product_attention(q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(scaled_attention, (tf.shape(scaled_attention), -1, self.d_model))
output = self.fc(concat_attention)
return output, attention_weights
def scaled_dot_product_attention(self, q, k, v, mask=None):
matmul_qk = tf.matmul(q, k, transpose_b=True)
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
if mask is not None:
scaled_attention_logits += (mask * -1e9)
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
output = tf.matmul(attention_weights, v)
return output, attention_weights
# 构建模型
src_input = Input(shape=(None,))
tar_input = Input(shape=(None,))
model = transformer_model(src_input, tar_input, 10000, 10000, 512, 8, 6, 6)
# 训练模型
loss_fn = SparseCategoricalCrossentropy(from_logits=True, reduction='none')
model.compile(optimizer=Adam(0.0001), loss=loss_fn)
model.fit(train_dataset, epochs=20, validation_data=val_dataset)
```
阅读全文