运用opencv-python编写检测图像中是否为坏苹果的代码,坏苹果定义为有深棕色区域,并将深棕色区域框起来
时间: 2023-06-17 13:06:04 浏览: 158
好的,需要先安装opencv-python库。可以通过以下命令进行安装:
```python
pip install opencv-python
```
接下来,我们可以按照以下步骤编写检测坏苹果的代码:
1. 导入必要的库
```python
import cv2
import numpy as np
```
2. 读取图片
``` python
img = cv2.imread('apple.jpg')
```
3. 将图片转换成HSV颜色空间
``` python
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
```
4. 定义深棕色的范围
``` python
lower = np.array([10, 100, 20])
upper = np.array([20, 255, 200])
```
5. 对图片进行阈值处理,将深棕色区域变成白色,其余区域变成黑色
``` python
mask = cv2.inRange(hsv, lower, upper)
```
6. 对二值化后的图像进行腐蚀和膨胀处理,以去除噪点
``` python
kernel = np.ones((5,5),np.uint8)
mask = cv2.erode(mask,kernel,iterations = 1)
mask = cv2.dilate(mask,kernel,iterations = 1)
```
7. 检测白色区域的轮廓,并将其框起来
``` python
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
area = cv2.contourArea(contour)
if area > 1000:
(x,y,w,h) = cv2.boundingRect(contour)
cv2.rectangle(img, (x,y), (x+w,y+h), (0,0,255), 2)
```
完整代码如下:
``` python
import cv2
import numpy as np
img = cv2.imread('apple.jpg')
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
lower = np.array([10, 100, 20])
upper = np.array([20, 255, 200])
mask = cv2.inRange(hsv, lower, upper)
kernel = np.ones((5,5),np.uint8)
mask = cv2.erode(mask,kernel,iterations = 1)
mask = cv2.dilate(mask,kernel,iterations = 1)
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
area = cv2.contourArea(contour)
if area > 1000:
(x,y,w,h) = cv2.boundingRect(contour)
cv2.rectangle(img, (x,y), (x+w,y+h), (0,0,255), 2)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
其中,'apple.jpg'为待检测的图片文件名。执行完代码后,将会在图片中框出深棕色区域。
阅读全文