slowfast中加GCNET注意力机制代码
时间: 2023-10-30 22:05:15 浏览: 216
以下是在SlowFast模型中使用GCNet注意力机制的示例代码:
首先,需要导入相关的库和模块:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
然后,定义GCNet注意力模块:
```python
class GCNet(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(GCNet, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // reduction_ratio),
nn.ReLU(inplace=True),
nn.Linear(in_channels // reduction_ratio, in_channels),
nn.Sigmoid()
)
def forward(self, x):
bs, ch, _, _ = x.size()
y = self.avg_pool(x).view(bs, ch)
y = self.fc(y).view(bs, ch, 1, 1)
return x * y.expand_as(x)
```
接下来,在SlowFast网络中使用GCNet注意力模块:
```python
class SlowFast(nn.Module):
def __init__(self, num_classes):
super(SlowFast, self).__init__()
# Slow pathway
self.slow_conv1 = nn.Conv3d(3, 64, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3))
self.slow_gc1 = GCNet(64)
# Fast pathway
self.fast_conv1 = nn.Conv3d(3, 8, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=(2, 3, 3))
self.fast_gc1 = GCNet(8)
# Other layers...
self.fc = nn.Linear(1024, num_classes)
def forward(self, slow_input, fast_input):
# Slow pathway
slow_out = F.relu(self.slow_conv1(slow_input))
slow_out = self.slow_gc1(slow_out)
# Fast pathway
fast_out = F.relu(self.fast_conv1(fast_input))
fast_out = self.fast_gc1(fast_out)
# Other layers...
# Fusion
out = torch.cat((slow_out, fast_out), dim=2)
# Other layers...
return out
```
以上是在SlowFast模型中使用GCNet注意力机制的示例代码。根据实际需求,你可能需要调整GCNet注意力模块的参数和SlowFast网络的结构。希望这能帮到你!
阅读全文