用tensorflow2写GCNet的代码
时间: 2023-12-14 19:35:53 浏览: 76
GCNet:气相色谱网
以下是使用TensorFlow 2实现GCNet的代码:
```python
import tensorflow as tf
class GCBlock(tf.keras.layers.Layer):
def __init__(self, channels, reduction=16):
super(GCBlock, self).__init__()
self.channels = channels
self.reduction = reduction
self.global_avg_pool = tf.keras.layers.GlobalAvgPool2D()
self.fc1 = tf.keras.layers.Dense(units=self.channels // self.reduction, activation='relu')
self.fc2 = tf.keras.layers.Dense(units=self.channels, activation='sigmoid')
def call(self, inputs):
x = self.global_avg_pool(inputs)
x = self.fc1(x)
x = self.fc2(x)
x = tf.reshape(x, [-1, self.channels, 1, 1])
return inputs * x
def GCNet(inputs):
x = tf.keras.layers.Conv2D(filters=64, kernel_size=3, padding='same', activation='relu')(inputs)
x = GCBlock(channels=64)(x)
x = tf.keras.layers.MaxPooling2D(pool_size=2)(x)
x = tf.keras.layers.Conv2D(filters=128, kernel_size=3, padding='same', activation='relu')(x)
x = GCBlock(channels=128)(x)
x = tf.keras.layers.MaxPooling2D(pool_size=2)(x)
x = tf.keras.layers.Conv2D(filters=256, kernel_size=3, padding='same', activation='relu')(x)
x = GCBlock(channels=256)(x)
x = tf.keras.layers.MaxPooling2D(pool_size=2)(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(units=128, activation='relu')(x)
outputs = tf.keras.layers.Dense(units=10, activation='softmax')(x)
return outputs
inputs = tf.keras.layers.Input(shape=(28, 28, 1))
outputs = GCNet(inputs)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
```
在上面的代码中,我们定义了一个GCBlock类,该类实现了GCNet中的GC模块。然后我们定义了一个GCNet函数,该函数使用Conv2D、GCBlock、MaxPooling2D和Dense等层来构建GCNet模型。最后,我们使用Keras的Model类将输入和输出包装在一起以创建完整的模型。
请注意,此代码仅用于演示目的,并可能需要进行调整以适合您的数据集和任务。
阅读全文