def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array, true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([])
时间: 2023-05-25 10:02:00 浏览: 118
A:这段代码是一个函数,用于显示图像及其对应的标签和预测结果。参数包括:图像的索引 i,预测数组 predictions_array,真实标签 true_label 和图像 img。函数会将 predictions_array、true_label 和 img 中与 i 相对应的值取出,然后使用 matplotlib 中的函数显示图像,并取消图像的网格和坐标轴标签。
相关问题
plt.rcParams['font.sans-serif']=['Arial Unicode MS'] #显示中文字体,这段代码我可是找了好长时间 plt.rcParams['axes.unicode_minus']=False def plot_image(i, predictions_array, true_labels, images): predictions_array, true_label, img = predictions_array[i], true_labels[i], images[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.grid(False) # 显示照片,以cm 为单位。 plt.imshow(images[i], cmap=plt.cm.binary) # 预测的图片是否正确,黑色底表示预测正确,红色底表示预测失败 predicted_label = np.argmax(prediction[i]) true_label = y_test[i][0] if predicted_label == true_label: color = 'black' else: color = 'red' # plt.xlabel("{} ({})".format(class_names[predicted_label], # class_names[true_label]), # color=color) plt.xlabel("预测{:2.0f}%是{}(实际{})".format(100*np.max(predictions_array), class_names[predicted_label], class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i][0] plt.grid(False) plt.xticks(range(10)) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, prediction, y_test, x_test) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, prediction, y_test)解释如下代码
这段代码是一个用于绘制图像和数值数组的函数。首先,通过设置字体和解决中文显示问题的代码来准备绘图环境。然后,定义了两个函数:`plot_image()` 和 `plot_value_array()`。`plot_image()`函数用于绘制图像,并根据预测结果的正确性将其标记为黑色或红色。`plot_value_array()`函数用于绘制数值数组,并将预测结果的最大值标记为红色,将真实标签标记为蓝色。接下来,通过循环调用这两个函数来绘制一组图像和相应的数值数组。最终,使用`plt.figure()`函数定义了一个绘图窗口,并在其中调用这两个函数来绘制图像和数值数组。
def plot_confuse(model, x_val, y_val): predictions = model.predict_classes(x_val) truelabel = y_val.argmax(axis=-1) # 将one-hot转化为label conf_mat = confusion_matrix(y_true=truelabel, y_pred=predictions) plt.figure() plot_confusion_matrix(conf_mat, range(np.max(truelabel) + 1))
如果你正在使用Keras的Sequential模型,那么你需要使用predict()方法获取模型的预测结果,如下所示:
```python
import numpy as np
# 假设你的模型是一个Sequential对象,名为model
predictions = model.predict(x_val)
predicted_classes = np.argmax(predictions, axis=1)
truelabel = np.argmax(y_val, axis=1) # 将one-hot编码转化为标签形式
conf_mat = confusion_matrix(y_true=truelabel, y_pred=predicted_classes)
plt.figure()
plot_confusion_matrix(conf_mat, classes=range(np.max(truelabel) + 1))
```
这个代码将使用model的predict()方法获取模型的预测结果predictions,然后使用numpy.argmax()函数获取预测结果的类别predicted_classes。同时,使用numpy.argmax()函数将y_val从one-hot编码转化为标签形式,并保存在truelabel中。接下来,使用sklearn库中的confusion_matrix()函数计算混淆矩阵,并将其保存在conf_mat中。最后,使用自定义的plot_confusion_matrix()函数绘制混淆矩阵图。需要注意的是,classes参数应该是类别的列表,而不是类别标签的数组。
阅读全文