粒子群优化相机内参的python代码
时间: 2023-01-30 20:58:26 浏览: 115
粒子群优化是一种用于最优化复杂问题的算法。在相机内参优化中,你可以使用粒子群优化来寻找最佳的相机内参(即焦距、主点偏移、旋转矩阵、畸变参数等)。
这里是一个用 Python 实现粒子群优化的示例代码:
```
import numpy as np
import random
import math
def optimize(objective_function, bounds, population_size=100, num_iterations=100):
# 初始化种群
population = []
for i in range(population_size):
individual = []
for j in range(len(bounds)):
individual.append(random.uniform(bounds[j][0], bounds[j][1]))
population.append(individual)
# 迭代求解
for t in range(num_iterations):
# 计算种群中每个个体的适应度
fitness = []
for i in range(population_size):
fitness.append(objective_function(population[i]))
# 找到最优解
best = np.argmax(fitness)
if t % 10 == 0:
print("Iteration", t, ": best solution is", population[best], "with fitness", fitness[best])
# 更新粒子的速度和位置
for i in range(population_size):
# 计算粒子的速度
velocity = []
for j in range(len(bounds)):
v_i = random.uniform(0, 1) * population[i][j] + random.uniform(0, 1) * population[best][j] - population[i][j]
velocity.append(v_i)
# 更新粒子的位置
for j in range(len(bounds)):
population[i][j] = population[i][j] + velocity[j]
# 限制粒子的位置在可行解范围内
if population[i][j] < bounds[j][0]:
population[i][j] = bounds[j][0]
elif population[i][j] > bounds[j][1]:
population[i][j] = bounds[j][1]
# 测试优化函数
def test_optimize
阅读全文