写一段深度强化学习的代码示例
时间: 2023-07-10 12:20:11 浏览: 130
好的,以下是一个使用深度强化学习算法(DQN)训练智能体玩游戏的Python代码示例:
import gym
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from collections import deque
import random
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000) # 记忆池
self.gamma = 0.95 # 折扣因子
self.epsilon = 1.0 # 探索率
self.epsilon_min = 0.01 # 最小探索率
self.epsilon_decay = 0.995 # 探索率衰减率
self.learning_rate = 0.001 # 学习率
self.model = self._build_model() # 创建神经网络
def _build_model(self):
# 创建一个有3层全连接层的神经网络
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.randint(self.action_size)
else:
return np.argmax(self.model.predict(state)[0])
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = reward + self.gamma * np.amax(self.model.predict(next_state)[0])
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
if __name__ == "__main__":
env = gym.make('CartPole-v1') # 创建CartPole环境
state_size = env.observation_space.shape[0] # 状态空间大小
action_size = env.action_space.n # 动作空间大小
agent = DQNAgent(state_size, action_size) # 创建智能体
batch_size = 32
num_episodes = 1000
for i in range(num_episodes):
state = env.reset()
state = np.reshape(state, [1, state_size])
done = False
score = 0
while not done:
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
score += reward
if len(agent.memory) > batch_size:
agent.replay(batch_size)
print("episode: {}/{}, score: {}".format(i, num_episodes, score))
这段代码是针对OpenAI Gym中的CartPole-v1环境进行训练的。在训练过程中,智能体会随机选择动作或者根据当前状态使用神经网络预测最优动作,并将当前状态、动作、奖励、下一个状态和是否结束的标志存储在记忆池中。智能体会从记忆池中随机选择一个小批量的样本进行训练,通过调整神经网络的参数来最小化预测值与目标值之间的差距。训练过程中,智能体会不断减小探索率,增加神经网络的预测能力。最终,智能体能够学会如何在CartPole-v1环境中平衡杆子并获得最高分数。
相关推荐


















