写一个Unity A星寻路算法

时间: 2023-06-11 12:08:08 浏览: 104
A*寻路算法是一种常用的路径规划算法,它在地图上寻找两个点之间的最短路径。在Unity中,我们可以使用以下步骤实现A*寻路算法: 1. 创建地图:我们需要创建一个网格地图,其中每个格子都代表着地图上的一个点。每个点都有一个坐标、可通过性和一些其他属性。 2. 创建节点类:我们需要创建一个节点类,用于保存每个点的信息。每个节点都有一个父节点、位置、代价和其他属性。 3. 创建Open和Close列表:我们需要创建两个列表,一个是Open列表,用于存储待搜索的节点,另一个是Close列表,用于存储已搜索过的节点。 4. 初始化起点和终点:我们需要初始化起点和终点,并将起点加入到Open列表中。 5. 搜索路径:我们需要重复以下步骤直到找到终点或者Open列表为空: a. 从Open列表中选取代价最小的节点作为当前节点。 b. 将当前节点从Open列表中删除,并将其加入到Close列表中。 c. 检查当前节点是否为终点,如果是则返回路径。 d. 遍历当前节点的相邻节点,计算它们的代价,并将它们加入到Open列表中。 6. 返回路径:如果找到了终点,则从终点开始沿着父节点一直往回走,直到回到起点。这样就得到了一条最短路径。 以下是示例代码: ```csharp using System.Collections; using System.Collections.Generic; using UnityEngine; public class AStar : MonoBehaviour { public LayerMask wallMask; public Vector2 gridSize; public float nodeRadius; Node[,] grid; float nodeDiameter; int gridSizeX, gridSizeY; void Start() { nodeDiameter = nodeRadius * 2; gridSizeX = Mathf.RoundToInt(gridSize.x / nodeDiameter); gridSizeY = Mathf.RoundToInt(gridSize.y / nodeDiameter); CreateGrid(); } void CreateGrid() { grid = new Node[gridSizeX, gridSizeY]; Vector3 worldBottomLeft = transform.position - Vector3.right * gridSize.x / 2 - Vector3.forward * gridSize.y / 2; for (int x = 0; x < gridSizeX; x++) { for (int y = 0; y < gridSizeY; y++) { Vector3 worldPoint = worldBottomLeft + Vector3.right * (x * nodeDiameter + nodeRadius) + Vector3.forward * (y * nodeDiameter + nodeRadius); bool walkable = !Physics.CheckSphere(worldPoint, nodeRadius, wallMask); grid[x, y] = new Node(walkable, worldPoint, x, y); } } } public List<Node> GetNeighbours(Node node) { List<Node> neighbours = new List<Node>(); for (int x = -1; x <= 1; x++) { for (int y = -1; y <= 1; y++) { if (x == 0 && y == 0) continue; int checkX = node.gridX + x; int checkY = node.gridY + y; if (checkX >= 0 && checkX < gridSizeX && checkY >= 0 && checkY < gridSizeY) { neighbours.Add(grid[checkX, checkY]); } } } return neighbours; } public Node NodeFromWorldPoint(Vector3 worldPosition) { float percentX = (worldPosition.x + gridSize.x / 2) / gridSize.x; float percentY = (worldPosition.z + gridSize.y / 2) / gridSize.y; percentX = Mathf.Clamp01(percentX); percentY = Mathf.Clamp01(percentY); int x = Mathf.RoundToInt((gridSizeX - 1) * percentX); int y = Mathf.RoundToInt((gridSizeY - 1) * percentY); return grid[x, y]; } public List<Node> FindPath(Vector3 startPos, Vector3 targetPos) { Node startNode = NodeFromWorldPoint(startPos); Node targetNode = NodeFromWorldPoint(targetPos); List<Node> openSet = new List<Node>(); HashSet<Node> closedSet = new HashSet<Node>(); openSet.Add(startNode); while (openSet.Count > 0) { Node currentNode = openSet[0]; for (int i = 1; i < openSet.Count; i++) { if (openSet[i].fCost < currentNode.fCost || (openSet[i].fCost == currentNode.fCost && openSet[i].hCost < currentNode.hCost)) { currentNode = openSet[i]; } } openSet.Remove(currentNode); closedSet.Add(currentNode); if (currentNode == targetNode) { return RetracePath(startNode, targetNode); } foreach (Node neighbour in GetNeighbours(currentNode)) { if (!neighbour.walkable || closedSet.Contains(neighbour)) { continue; } int newCostToNeighbour = currentNode.gCost + GetDistance(currentNode, neighbour); if (newCostToNeighbour < neighbour.gCost || !openSet.Contains(neighbour)) { neighbour.gCost = newCostToNeighbour; neighbour.hCost = GetDistance(neighbour, targetNode); neighbour.parent = currentNode; if (!openSet.Contains(neighbour)) { openSet.Add(neighbour); } } } } return null; } List<Node> RetracePath(Node startNode, Node endNode) { List<Node> path = new List<Node>(); Node currentNode = endNode; while (currentNode != startNode) { path.Add(currentNode); currentNode = currentNode.parent; } path.Reverse(); return path; } int GetDistance(Node nodeA, Node nodeB) { int distX = Mathf.Abs(nodeA.gridX - nodeB.gridX); int distY = Mathf.Abs(nodeA.gridY - nodeB.gridY); if (distX > distY) { return 14 * distY + 10 * (distX - distY); } return 14 * distX + 10 * (distY - distX); } public class Node { public bool walkable; public Vector3 worldPosition; public int gridX; public int gridY; public int gCost; public int hCost; public Node parent; public Node(bool _walkable, Vector3 _worldPos, int _gridX, int _gridY) { walkable = _walkable; worldPosition = _worldPos; gridX = _gridX; gridY = _gridY; } public int fCost { get { return gCost + hCost; } } } } ``` 在上面的代码中,我们首先创建了一个网格地图,并在其中创建了节点类。然后,我们实现了A*算法的核心部分,并将其用于在网格地图上搜索路径。在搜索结束后,我们返回了一条最短路径。

相关推荐

最新推荐

recommend-type

Unity3D实现NavMesh导航网格寻路

4. 选择需要寻路的游戏对象,为它添加一个 NavMeshAgent 组件。 5. 编写寻路代码,新建一个脚本: using UnityEngine; using System.Collections; public class DemoNavigation : MonoBehaviour { private Nav...
recommend-type

unity绘制一条流动的弧线(贝塞尔线)

Unity 中绘制流动的弧线(贝塞尔线)是游戏开发中的一个重要技术,用于创建具有动感的游戏效果。本文将详细介绍 Unity 中绘制流动的弧线的方法,并提供了详细的示例代码。 一、贝塞尔曲线简介 贝塞尔曲线是一种...
recommend-type

合信TP-i系列HMI触摸屏CAD图.zip

合信TP-i系列HMI触摸屏CAD图
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。