如何用tff实现fashion_mnist的联邦学习
时间: 2023-06-10 16:03:18 浏览: 100
你可以使用TensorFlow Federated框架来实现fashion_mnist的联邦学习。首先,你需要将fashion_mnist数据集分割成不同的客户端,并为每个客户端分配一个唯一的ID。接下来,你需要定义一个模型,并使用Federated Learning算法来训练它。在训练过程中,每个客户端会分别使用其分配的数据来训练模型,然后将模型参数更新发送给服务器进行聚合。最终,你将得到一个在所有客户端上训练的模型,而且不需要将任何敏感数据传输到服务器。
相关问题
example_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[0])如何将该段代码修改为使用本地的fashion_mnist数据
集呢?
您可以尝试使用以下代码将 `example_dataset` 进行修改以使用本地的 fashion_mnist 数据集:
```
import tensorflow_federated as tff
from tensorflow import keras
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
def preprocess(dataset):
def batch_format_fn(element):
return (tf.reshape(element['pixels'],[-1,784]),tf.reshape(element['label'],[-1,1]))
return dataset.repeat(NUM_EPOCHS).map(batch_format_fn).shuffle(SHUFFLE_BUFFER).batch(BATCH_SIZE)
def make_federated_data(client_data, client_ids):
return [preprocess(client_data.create_tf_dataset_for_client(client_id)) for client_id in client_ids]
emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data()
fashion_mnist_train, fashion_mnist_test = fashion_mnist.load_data()
fashion_mnist_train_client = tff.simulation.ClientData.from_tensor_slices(
{'pixels': train_images, 'label': train_labels})
fashion_mnist_test_client = tff.simulation.ClientData.from_tensor_slices(
{'pixels': test_images, 'label': test_labels})
federated_train_data_fashion_mnist = make_federated_data(fashion_mnist_train_client,
fashion_mnist_train_client.client_ids)
example_dataset = federated_train_data_fashion_mnist[0]
```
这段代码将使用 `tff.simulation.datasets.emnist.load_data()` 加载 EMNIST 数据集,并使用 `fashion_mnist.load_data()` 加载 fashion_mnist 数据集。然后,它将为 `fashion_mnist` 创建 `ClientData` 对象,然后将 `ClientData` 对象转换为可以在 TFF 训练环境中使用的联合数据集。最后,它将 `example_dataset` 赋值给第一个 "fashion_mnist" 客户端的数据集。
import nest_asyncio nest_asyncio.apply() import collections import numpy as np import tensorflow as tf import tensorflow_federated as tff np.random.seed(0) tff.federated_computation(lambda: 'Hello, World!')() emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data(cache_dir = '/home/cqx/PycharmProjects/cache/fed_emnist_digitsonly') example_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[0]) example_element = next(iter(example_dataset)) example_element['label'].numpy()当把数据集换成本地fashion_mnist时,代码该如何修改
如果要将数据集从emnist_train更改为fashion_mnist,则需要对代码进行以下更改:
1. 导入fashion_mnist数据集
```
from tensorflow.keras.datasets import fashion_mnist
```
2. 加载fashion_mnist数据集
```
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
```
3. 将数据集转换为TFF格式
```
def preprocess_fn(images, labels):
images = tf.expand_dims(images, axis=-1)
images = tf.cast(images, tf.float32) / 255.0
labels = tf.one_hot(labels, 10)
return collections.OrderedDict(x=images, y=labels)
def make_federated_data(client_data, client_ids):
return [client_data.create_tf_dataset_for_client(client_id)
.map(preprocess_fn)
.shuffle(500)
.repeat(NUM_EPOCHS)
.batch(BATCH_SIZE)
.prefetch(PREFETCH_BUFFER)
for client_id in client_ids]
train_data = make_federated_data(fashion_mnist, client_ids)
```
在替换原始数据集之后,这些更改将确保新数据集与代码一起工作。
阅读全文