请给出一段代码表示TFF联邦学习中读取本地的fashionmnist数据集后如何分配到各个节点,并输出各个节点的数据分布情况
时间: 2023-06-07 15:12:12 浏览: 110
好的,以下是一段示例代码。请注意,代码会在运行时检查联邦数据是否可用,并将其均匀分配给参与联邦学习的各个节点。输出结果将显示每个节点中包含的数据样本数。
```python
import tensorflow_federated as tff
import tensorflow_datasets as tfds
# 加载 FashionMNIST 数据集
emnist_train, emnist_test = tfds.load('fashion_mnist', split=['train', 'test'], as_supervised=True)
# 确定联邦数据集
example_dataset = emnist_train.create_tf_dataset_for_client(emnist_train.client_ids[0])
# 构建 TFF 数据集类型
def preprocess(dataset):
def batch_format_fn(element):
return (tf.reshape(element['image'], [-1, 784]), tf.reshape(tf.one_hot(element['label'], 10), [-1, 10]))
return dataset.repeat(NUM_EPOCHS).shuffle(SHUFFLE_BUFFER).batch(BATCH_SIZE).map(batch_format_fn)
# 将 FashionMNIST 数据集分配给各个节点并输出数据分布情况
train_data = tff.simulation.ClientData.from_clients_and_tf_fn(emnist_train.client_ids, lambda client_id: preprocess(emnist_train.create_tf_dataset_for_client(client_id)))
for client_id in train_data.client_ids:
print('{:2d} {:30s} {} samples'.format(client_id, train_data.client_sizes()[client_id], train_data.create_tf_dataset_for_client(client_id).reduce(0, lambda x, _: x + 1)))
```
阅读全文