self.classifier = nn.Conv2D(32, n_class, kernel_size=1)
时间: 2023-05-12 19:04:52 浏览: 84
这是一个关于神经网络的问题,nn.Conv2D 是 PyTorch 中的一个卷积层,用于图像处理任务中的特征提取。这个代码片段中,self.classifier 是一个卷积层,输入是一个 32 通道的特征图,输出是一个大小为 n_class 的特征图,卷积核大小为 1x1。
相关问题
def __init__(self, num_classes=77): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=5), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.classifier = nn.Linear(256, num_classes)
This is the constructor of the AlexNet class in PyTorch. It defines the architecture of the AlexNet model, which is a deep convolutional neural network designed for image classification tasks.
The model consists of two main parts: the feature extractor and the classifier. The feature extractor is composed of several convolutional layers followed by max pooling layers, which extract high-level features from the input image. The classifier is a fully connected layer that maps the extracted features to the output classes.
The input to the model is a 3-channel image with height and width of at least 227 pixels. The output is a probability distribution over the 77 possible classes (by default).
Overall, this model is effective for image classification tasks and has achieved state-of-the-art performance on several benchmark datasets.
将下列代码改写成伪代码:class AlexNet(nn.Module): def __init__(self, num_classes=3): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x
定义类 AlexNet,继承 nn.Module 类:
定义 __init__ 方法,传入参数 self 和 num_classes=3:
调用父类 nn.Module 的 __init__ 方法:
定义属性 features,值为 nn.Sequential 实例,包含以下层:
卷积层 nn.Conv2d,输入通道数为 3,输出通道数为 64,核大小为 11,步长为 4,填充为 2
激活函数层 nn.ReLU,inplace 参数为 True
最大池化层 nn.MaxPool2d,核大小为 3,步长为 2
卷积层 nn.Conv2d,输入通道数为 64,输出通道数为 192,核大小为 5,填充为 2
激活函数层 nn.ReLU,inplace 参数为 True
最大池化层 nn.MaxPool2d,核大小为 3,步长为 2
卷积层 nn.Conv2d,输入通道数为 192,输出通道数为 384,核大小为 3,填充为 1
激活函数层 nn.ReLU,inplace 参数为 True
卷积层 nn.Conv2d,输入通道数为 384,输出通道数为 256,核大小为 3,填充为 1
激活函数层 nn.ReLU,inplace 参数为 True
卷积层 nn.Conv2d,输入通道数为 256,输出通道数为 256,核大小为 3,填充为 1
激活函数层 nn.ReLU,inplace 参数为 True
最大池化层 nn.MaxPool2d,核大小为 3,步长为 2
定义属性 avgpool,值为 nn.AdaptiveAvgPool2d 实例,输出大小为 (6, 6)
定义属性 classifier,值为 nn.Sequential 实例,包含以下层:
Dropout 层 nn.Dropout
全连接层 nn.Linear,输入大小为 256 * 6 * 6,输出大小为 4096
激活函数层 nn.ReLU,inplace 参数为 True
Dropout 层 nn.Dropout
全连接层 nn.Linear,输入大小为 4096,输出大小为 4096
激活函数层 nn.ReLU,inplace 参数为 True
全连接层 nn.Linear,输入大小为 4096,输出大小为 num_classes
定义 forward 方法,传入参数 self 和 x:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
返回 x
阅读全文