class Classifier(nn.Module): def __init__(self): super(Classifier, self).__init__() # torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) # torch.nn.MaxPool2d(kernel_size, stride, padding) # input 维度 [3, 128, 128] self.cnn = nn.Sequential( nn.Conv2d(3, 64, 3, 1, 1), # [64, 128, 128] nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2, 2, 0), # [64, 64, 64] nn.Conv2d(64, 128, 3, 1, 1), # [128, 64, 64] nn.BatchNorm2d(128), nn.ReLU(), nn.MaxPool2d(2, 2, 0), # [128, 32, 32] nn.Conv2d(128, 256, 3, 1, 1), # [256, 32, 32] nn.BatchNorm2d(256), nn.ReLU(), nn.MaxPool2d(2, 2, 0), # [256, 16, 16] nn.Conv2d(256, 512, 3, 1, 1), # [512, 16, 16] nn.BatchNorm2d(512), nn.ReLU(), nn.MaxPool2d(2, 2, 0), # [512, 8, 8] nn.Conv2d(512, 512, 3, 1, 1), # [512, 8, 8] nn.BatchNorm2d(512), nn.ReLU(), nn.MaxPool2d(2, 2, 0), # [512, 4, 4] ) self.fc = nn.Sequential( nn.Linear(512 * 4 * 4, 1024), nn.ReLU(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 11) ) def forward(self, x): out = self.cnn(x) out = out.view(out.size()[0], -1) return self.fc(out) print("Model complicated")
时间: 2024-03-29 17:39:41 浏览: 117
这段代码定义了一个卷积神经网络分类器。它包含了5个卷积层和3个全连接层。在卷积层中,每个卷积层后面都跟着一个批归一化层和一个ReLU激活函数,最后一个卷积层后面没有激活函数。每个卷积层后面都跟着一个最大池化层,用于降低特征图的空间大小。在网络的最后一层,将特征图展平成一维向量,然后通过3个全连接层将其映射到11个类别的输出。该网络使用ReLU激活函数和批归一化技术来加速训练和提高模型的泛化能力。
相关问题
class NormedLinear(nn.Module): def __init__(self, feat_dim, num_classes): super().__init__() self.weight = nn.Parameter(torch.Tensor(feat_dim, num_classes)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) def forward(self, x): return F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) class LearnableWeightScalingLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_norm = nn.Parameter(torch.ones(1, num_classes)) def forward(self, x): return self.classifier(x) * self.learned_norm class DisAlignLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_magnitude = nn.Parameter(torch.ones(1, num_classes)) self.learned_margin = nn.Parameter(torch.zeros(1, num_classes)) self.confidence_layer = nn.Linear(feat_dim, 1) torch.nn.init.constant_(self.confidence_layer.weight, 0.1) def forward(self, x): output = self.classifier(x) confidence = self.confidence_layer(x).sigmoid() return (1 + confidence * self.learned_magnitude) * output + confidence * self.learned_margin class MLP_ConClassfier(nn.Module): def __init__(self): super(MLP_ConClassfier, self).__init__() self.num_inputs, self.num_hiddens_1, self.num_hiddens_2, self.num_hiddens_3, self.num_outputs \ = 41, 512, 128, 32, 5 self.num_proj_hidden = 32 self.mlp_conclassfier = nn.Sequential( nn.Linear(self.num_inputs, self.num_hiddens_1), nn.ReLU(), nn.Linear(self.num_hiddens_1, self.num_hiddens_2), nn.ReLU(), nn.Linear(self.num_hiddens_2, self.num_hiddens_3), ) self.fc1 = torch.nn.Linear(self.num_hiddens_3, self.num_proj_hidden) self.fc2 = torch.nn.Linear(self.num_proj_hidden, self.num_hiddens_3) self.linearclassfier = nn.Linear(self.num_hiddens_3, self.num_outputs) self.NormedLinearclassfier = NormedLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs) self.DisAlignLinearclassfier = DisAlignLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True) self.LearnableWeightScalingLinearclassfier = LearnableWeightScalingLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True)
这段代码定义了一个名为MLP_ConClassfier的神经网络模型,它包含了多个子模块,包括三个不同的分类器:NormedLinearclassfier、DisAlignLinearclassfier和LearnableWeightScalingLinearclassfier。这些分类器都是基于输入特征进行分类的,并且使用不同的方法来实现分类功能。此外,该模型还包含了一个MLP网络,用于将输入特征映射到更高维的特征空间中。该模型的输入特征维度为41,输出类别数为5。
class DepressionDiagnosisModel(nn.Module): def __init__(self, num_classes): super(DepressionDiagnosisModel, self).__init__() self.num_classes = num_classes self.features = nn.Sequential( # 定义模型的特征提取部分 ) self.classifier = nn.Sequential( # 定义模型的分类器部分 ) self.old_model = None self.old_classes = 0
这段代码定义了一个名为 "DepressionDiagnosisModel" 的类,继承自 PyTorch 的 nn.Module 类。该类的构造函数接受一个参数 "num_classes",表示分类任务的类别数。在构造函数中,首先调用父类构造函数初始化模型,然后定义了三个成员变量:
- self.num_classes:表示分类任务的类别数。
- self.features:是一个 nn.Sequential 对象,用于定义模型的特征提取部分,可以由多个 nn.Module 组成。
- self.classifier:也是一个 nn.Sequential 对象,用于定义模型的分类器部分,可以由多个 nn.Module 组成。
同时,还定义了两个成员变量,分别是 self.old_model 和 self.old_classes,用于存储模型在增量学习中旧模型和旧类别的信息。
阅读全文